Person:
Jackson, Melody Moore

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Towards a Canine-Human Communication System Based on Head Gestures
    (Georgia Institute of Technology, 2015-11) Valentin, Giancarlo ; Alcaidinho, Joelle ; Howard, Ayanna M. ; Jackson, Melody Moore ; Starner, Thad
    We explored symbolic canine-human communication for working dogs through the use of canine head gestures. We identified a set of seven criteria for selecting head gestures and identified the first four deserving further experimentation. We devised computationally inexpensive mechanisms to prototype the live system from a motion sensor on the dog’s collar. Each detected gesture is paired with a predetermined message that is voiced to the humans by a smart phone. We examined the system and proposed gestures in two experiments, one indoors and one outdoors. Experiment A examined both gesture detection accuracy and a dog’s ability to perform the gestures using a predetermined routine of cues. Experiment B examined the accuracy of this system on two outdoor working-dog scenarios. The detection mechanism we presented is sufficient to point to improvements into system design and provide valuable insights into which gestures fulfill the seven minimum criteria.
  • Item
    Facilitating Interactions for Dogs with Occupations: Wearable Dog - Activated Interfaces
    (Georgia Institute of Technology, 2013-09) Jackson, Melody Moore ; Zeagler, Clint ; Valentin, Giancarlo ; Martin, Alex ; Martin, Vincent ; Delawalla, Adil ; Blount, Wendy ; Eiring, Sarah ; Hollis, Ryan ; Kshirsagar, Yash ; Starner, Thad
    Working dogs have improved the lives of thousands of people. However, communication between human and canine partners is currently limited. The main goal of the FIDO project is to research fundamental aspects of wearable technologies to support communication between working dogs and their handlers. In this pilot study, the FIDO team investigated on-body interfaces for assistance dogs in the form of wearable technology integrated into assistance dog vests. We created four different sensors that dogs could activate (based on biting, tugging, and nose gestures) and tested them on-body with three assistance-trained dogs. We were able to demonstrate that it is possible to create wearable sensors that dogs can reliably activate on command.