Person:
Lightsey, E. Glenn

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 1 of 1
  • Item
    Accuracy/Computation Performance of a New Trilateration Scheme for GPS-Style Localization
    (Georgia Institute of Technology, 2018-03) Cheung, Kar-Ming ; Lightsey, E. Glenn ; Lee, Charles H.
    We recently introduced a new geometric trilateration (GT) method for GPS-style positioning. Preliminary single-point analysis using simplistic error assumptions indicates that the new scheme delivers almost indistinguishable localization accuracy as the traditional Newton-Raphson (NR) approach. Also, the same computation procedure can be used to perform high-accuracy relative positioning between a reference vehicle and an arbitrary number of target vehicles. This scheme has the potential to enable a) new mission concepts in collaborative science, b) in-situ navigation services for human Mars missions, and c) lower cost and faster acquisition of GPS signals for consumer-grade GPS products. The new GT scheme differs from the NR scheme in the following ways: 1. The new scheme is derived from Pythagoras Theorem, whereas the NR method is based on the principle of linear regression. 2. The NR method uses the absolute locations (xi, yi, zi)’s of the GPS satellites as input to each step of the localization computation. The GT method uses the Directional Cosines Ui’s from Earth’s center to the GPS satellite Si. 3. Both the NR method and the GT method iterate to converge to a localized solution. In each iteration step, multiple matrix operations are performed. The NR method constructs a different matrix in each iterative step, thus requires performing a new set of matrix operations in each step. The GT scheme uses the same matrix in each iteration, thus requiring computing the matrix operations only once for all subsequent iterations. In this paper, we perform an in-depth comparison between the GT scheme and the NR method in terms of a) GPS localization accuracy in the GPS operation environment, b) its sensitivity with respect to systematic errors and random errors, and c) computation load required to converge to a localization solution.