Person:
Orso, Alessandro

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Execution Hijacking: Improving Dynamic Analysis by Flying off Course
    (Georgia Institute of Technology, 2010) Tsankov, Petar ; Jin, Wei ; Orso, Alessandro ; Sinha, Saurabh
    Typically, dynamic-analysis techniques operate on a small subset of all possible program behaviors, which limits their effectiveness and the representativeness of the computed results. To address this issue, a new paradigm is emerging: execution hijacking—techniques that explore a larger set of program behaviors by forcing executions along specific paths. Although hijacked executions are infeasible for the given inputs, they can still produce feasible behaviors that could be observed under other inputs. In such cases, execution hijacking can improve the effectiveness of dynamic analysis without requiring the (expensive) generation of additional inputs. To evaluate the usefulness of execution hijacking, we defined, implemented, and evaluated several variants of it. Specifically, we performed empirical study where we assessed whether execution hijacking could improve the effectiveness of two common dynamic analyses: software testing and memory error detection. The results of the study show that execution hijacking, if suitably performed, can indeed help dynamic analysis techniques.
  • Item
    Understanding Data Dependences in the Presence of Pointers
    (Georgia Institute of Technology, 2003) Orso, Alessandro ; Sinha, Saurabh ; Harrold, Mary Jean
    Understanding data dependences in programs is important for many software-engineering activities, such as program understanding, impact analysis, reverse engineering, and debugging. The presence of pointers, arrays, and structures can cause subtle and complex data dependences that can be difficult to understand. For example, in languages such as C, an assignment made through a pointer dereference can assign a value to one of several variables, none of which may appear syntactically in that statement. In the first part of this paper, we describe two techniques for classifying data dependences in the presence of pointer dereferences. The first technique classifies data dependences based on definition type, use type, and path type. The second technique classifies data dependences based on span. We present empirical results to illustrate the distribution of data-dependence types and spans for a set of real C programs. In the second part of the paper, we discuss two applications of the classification techniques. First, we investigate different ways in which the classification can be used to facilitate data-flow testing and verification. We outline an approach that uses types and spans of data dependences to determine the appropriate verification technique for different data dependences; we present empirical results to illustrate the approach. Second, we present a new slicing paradigm that computes slices based on types of data dependences. Based on the new paradigm, we define an incremental slicing technique that computes a slice in multiple steps. We present empirical results to illustrate the sizes of incremental slices and the potential usefulness of incremental slicing for debugging.