Person:
Voit, Eberhard O.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Parameter optimization in S-system models
    (Georgia Institute of Technology, 2008-04) Vilela, Marco ; Chou, I-Chun ; Vinga, Susana ; Vasconcelos, Ana Tereza R. ; Voit, Eberhard O. ; Almeida, Jonas S.
    Background: The inverse problem of identifying the topology of biological networks from their time series responses is a cornerstone challenge in systems biology. We tackle this challenge here through the parameterization of S-system models. It was previously shown that parameter identification can be performed as an optimization based on the decoupling of the differential Ssystem equations, which results in a set of algebraic equations. Results: A novel parameterization solution is proposed for the identification of S-system models from time series when no information about the network topology is known. The method is based on eigenvector optimization of a matrix formed from multiple regression equations of the linearized decoupled S-system. Furthermore, the algorithm is extended to the optimization of network topologies with constraints on metabolites and fluxes. These constraints rejoin the system in cases where it had been fragmented by decoupling. We demonstrate with synthetic time series why the algorithm can be expected to converge in most cases. Conclusion: A procedure was developed that facilitates automated reverse engineering tasks for biological networks using S-systems. The proposed method of eigenvector optimization constitutes an advancement over S-system parameter identification from time series using a recent method called Alternating Regression. The proposed method overcomes convergence issues encountered in alternate regression by identifying nonlinear constraints that restrict the search space to computationally feasible solutions. Because the parameter identification is still performed for each metabolite separately, the modularity and linear time characteristics of the alternating regression method are preserved. Simulation studies illustrate how the proposed algorithm identifies the correct network topology out of a collection of models which all fit the dynamical time series essentially equally well.
  • Item
    Parameter estimation in biochemical systems models with alternating regression
    (Georgia Institute of Technology, 2006-07-19) Chou, I-Chun ; Martens, Harald ; Voit, Eberhard O.
    Background: The estimation of parameter values continues to be the bottleneck of the computational analysis of biological systems. It is therefore necessary to develop improved methods that are effective, fast, and scalable. Results: We show here that alternating regression (AR), applied to S-system models and combined with methods for decoupling systems of differential equations, provides a fast new tool for identifying parameter values from time series data. The key feature of AR is that it dissects the nonlinear inverse problem of estimating parameter values into iterative steps of linear regression. We show with several artificial examples that the method works well in many cases. In cases of no convergence, it is feasible to dedicate some computational effort to identifying suitable start values and search settings, because the method is fast in comparison to conventional methods that the search for suitable initial values is easily recouped. Because parameter estimation and the identification of system structure are closely related in S-system modeling, the AR method is beneficial for the latter as well. Specifically, we show with an example from the literature that AR is three to five orders of magnitudes faster than direct structure identifications in systems of nonlinear differential equations. Conclusion: Alternating regression provides a strategy for the estimation of parameter values and the identification of structure and regulation in S-systems that is genuinely different from all existing methods. Alternating regression is usually very fast, but its convergence patterns are complex and will require further investigation. In cases where convergence is an issue, the enormous speed of the method renders it feasible to select several initial guesses and search settings as an effective countermeasure.