Person:
Rehg, James M.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Inferring Object Properties from Incidental Contact with a Tactile-Sensing Forearm
    (Georgia Institute of Technology, 2014-09) Bhattacharjee, Tapomayukh ; Rehg, James M. ; Kemp, Charles C.
    Whole-arm tactile sensing enables a robot to sense properties of contact across its entire arm. By using this large sensing area, a robot has the potential to acquire useful information from incidental contact that occurs while performing a task. Within this paper, we demonstrate that data-driven methods can be used to infer mechanical properties of objects from incidental contact with a robot’s forearm. We collected data from a tactile-sensing forearm as it made contact with various objects during a simple reaching motion. We then used hidden Markov models (HMMs) to infer two object properties (rigid vs. soft and fixed vs. movable) based on low-dimensional features of time-varying tactile sensor data (maximum force, contact area, and contact motion). A key issue is the extent to which data-driven methods can generalize to robot actions that differ from those used during training. To investigate this issue, we developed an idealized mechanical model of a robot with a compliant joint making contact with an object. This model provides intuition for the classification problem. We also conducted tests in which we varied the robot arm’s velocity and joint stiffness. We found that, in contrast to our previous methods [1], multivariate HMMs achieved high cross-validation accuracy and successfully generalized what they had learned to new robot motions with distinct velocities and joint stiffnesses.
  • Item
    Monitoring Dressing Activity Failures Through RFID and Video
    (Georgia Institute of Technology, 2012) Matic, Aleksandar ; Mehta, P. ; Rehg, James M. ; Osmani, Venet ; Mayora, Oscar
  • Item
    Automated Macular Pathology Diagnosis in Retinal OCT Images Using Multi-Scale Spatial Pyramid and Local Binary Patterns in Texture and Shape Encoding
    (Georgia Institute of Technology, 2011-10) Liu, Yu-Ying ; Chen, Mei ; Ishikawa, Hiroshi ; Wollstein, Gadi ; Schuman, Joel S. ; Rehg, James M.
    We address a novel problem domain in the analysis of optical coherence tomography (OCT) images: the diagnosis of multiple macular pathologies in retinal OCT images. The goal is to identify the presence of normal macula and each of three types of macular pathologies, namely, macular edema, macular hole, and age-related macular degeneration, in the OCT slice centered at the fovea. We use a machine learning approach based on global image descriptors formed from a multi-scale spatial pyramid. Our local features are dimension-reduced Local Binary Pattern histograms, which are capable of encoding texture and shape information in retinal OCT images and their edge maps, respectively. Our representation operates at multiple spatial scales and granularities, leading to robust performance. We use 2-class Support Vector Machine classifiers to identify the presence of normal macula and each of the three pathologies. To further discriminate sub-types within a pathology, we also build a classifier to differentiate full-thickness holes from pseudo-holes within the macular hole category. We conduct extensive experiments on a large dataset of 326 OCT scans from 136 subjects. The results show that the proposed method is very effective (all AUC > 0:93).
  • Item
    Learning from Examples in Unstructured, Outdoor Environments
    (Georgia Institute of Technology, 2006) Sun, J. ; Mehta, Tejas R. ; Wooden, David ; Powers, Matthew ; Rehg, James M. ; Balch, Tucker ; Egerstedt, Magnus B.
    In this paper, we present a multi-pronged approach to the "Learning from Example" problem. In particular, we present a framework for integrating learning into a standard, hybrid navigation strategy, composed of both plan-based and reactive controllers. Based on the classification of colors and textures as either good or bad, a global map is populated with estimates of preferability in conjunction with the standard obstacle information. Moreover, individual feedback mappings from learned features to learned control actions are introduced as additional behaviors in the behavioral suite. A number of real-world experiments are discussed that illustrate the viability of the proposed method.