Person:
Zegura, Ellen W.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 1 of 1
Thumbnail Image
Item

Routing in Space and Time in Networks with Predictable Mobility

2004 , Ammar, Mostafa H. , Zegura, Ellen W. , Merugu, Shashidhar

We consider the problem of routing in emerging wireless networks where nodes move around explicitly carrying messages to facilitate communication in an otherwise partitioned network. The absence of a path at any instant of time between a source and destination makes the traditional mobile ad hoc routing protocols unsuitable for these networks. However, the explicit node movements create paths over time that include the possibility of a node carrying a message before forwarding to another suitable node. Identifying such paths over space and time is a key challenge in these store, carry and forward networks. In most of these networks, the mobility of nodes is predictable either over a finite time horizon or indefinitely due to periodicity in node motion. We propose a new space-time routing framework for these networks leveraging the predictability in node motion. Specifically, we construct space-time routing tables where the next hop node is selected from the current as well as the future neighbors. Unlike traditional routing tables, our space-time routing tables use both the destination and the arrival time of message to determine the next hop node. We devise an algorithm to compute these space-time routing tables to minimize the end-to-end message delivery delay. Our routing algorithm is based on a space-time graph model derived from the mobility of nodes. We empirically evaluate our approach using simulations and observe improved performance as compared to other approaches based on heuristics.