Person:
Sherrill, C. David

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions
    (Georgia Institute of Technology, 2011-11) Hohenstein, Edward G. ; Parrish, Robert M. ; Sherrill, C. David ; Turney, Justin M. ; Schaefer, Henry F., III
    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.
  • Item
    Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory
    (Georgia Institute of Technology, 2011-09) Bozkaya, Uğur ; Turney, Justin M. ; Yamaguchi, Yukio ; Schaefer, Henry F., III ; Sherrill, C. David
    Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Møller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply “OD” and “OMP2” for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density matrices, the MO gradient, and the MO Hessian are reported both in spin-orbital and closed-shell spin-adapted forms. The Newton-Raphson algorithm is used for the optimization procedure using the MO gradient and Hessian. Further, orbital stability analyses are also carried out at correlated levels. The OD and OMP2 approaches are compared with the standard MP2, CCD, CCSD, and CCSD(T) methods. All these methods are applied to H₂O, three diatomics, and the O₄⁺ molecule. Results demonstrate that the CCSD and OD methods give nearly identical results for H₂O and diatomics; however, in symmetry-breaking problems as exemplified by O₄⁺, the OD method provides better results for vibrational frequencies. The OD method has further advantagesover CCSD: its analytic gradients are easier to compute since there is no need to solve the coupledperturbed equations for the orbital response, the computation of one-electron properties are easier because there is no response contribution to the particle density matrices, the variational optimized orbitals can be readily extended to allow inactive orbitals, it avoids spurious second-order poles in its response function, and its transition dipole moments are gauge invariant. The OMP2 has these same advantages over canonical MP2, making it promising for excited state properties via linear response theory. The quadratically convergent orbital-optimization procedure converges quickly for OMP2, and provides molecular properties that are somewhat different than those of MP2 for most of the test cases considered (although they are similar for H₂O). Bond lengths are somewhat longer, and vibrational frequencies somewhat smaller, for OMP2 compared to MP2. In the difficult case of O₄⁺, results for several vibrational frequencies are significantly improved in going from MP2 to OMP2.