Person:
McDonald, John F.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 9 of 9
  • Item
    Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells
    (Georgia Institute of Technology, 2009-12-29) Bowen, Nathan J. ; Walker, L. DeEtte ; Matyunina, Lilya V. ; Logani, Sanjay ; Totten, Kimberly A. ; Benigno, Benedict B. ; McDonald, John F.
    Background Accumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE) and/or an as yet undefined class of progenitor cells residing in the distal end of the fallopian tube. Methods Comparative gene expression profiling analyses were carried out on OSE removed from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI) isolated by laser capture micro-dissection (LCM) from human serous papillary ovarian adenocarcinomas. The results of the gene expression analyses were randomly confirmed in paraffin embedded tissues from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using immunohistochemistry. Differentially expressed genes were analyzed using gene ontology, molecular pathway, and gene set enrichment analysis algorithms. Results Consistent with multipotent capacity, genes in pathways previously associated with adult stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that are significantly differentially expressed, a number of pathways and novel pathway interactions are identified that may contribute to ovarian adenocarcinoma development.
  • Item
    Ovarian Cancer Detection from Metabolomic Liquid Chromatography/Mass Spectrometry Data by Support Vector Machines
    (Georgia Institute of Technology, 2009-08-22) Guan, Wei ; Zhou, Manshui ; Hampton, Christina Young ; Benigno, Benedict B. ; Walker, L. DeEtte ; Gray, Alexander ; McDonald, John F. ; Fernández, Facundo M.
    Background: The majority of ovarian cancer biomarker discovery efforts focus on the identification of proteins that can improve the predictive power of presently available diagnostic tests. We here show that metabolomics, the study of metabolic changes in biological systems, can also provide characteristic small molecule fingerprints related to this disease. Results: In this work, new approaches to automatic classification of metabolomic data produced from sera of ovarian cancer patients and benign controls are investigated. The performance of support vector machines (SVM) for the classification of liquid chromatography/time-of-flight mass spectrometry (LC/TOF MS) metabolomic data focusing on recognizing combinations or "panels" of potential metabolic diagnostic biomarkers was evaluated. Utilizing LC/TOF MS, sera from 37 ovarian cancer patients and 35 benign controls were studied. Optimum panels of spectral features observed in positive or/and negative ion mode electrospray (ESI) MS with the ability to distinguish between control and ovarian cancer samples were selected using state-of-the-art feature selection methods such as recursive feature elimination and L1-norm SVM. Conclusion: Three evaluation processes (leave-one-out-cross-validation, 12-fold-cross-validation, 52-20-split-validation) were used to examine the SVM models based on the selected panels in terms of their ability for differentiating control vs. disease serum samples. The statistical significance for these feature selection results were comprehensively investigated. Classification of the serum sample test set was over 90% accurate indicating promise that the above approach may lead to the development of an accurate and reliable metabolomic-based approach for detecting ovarian cancer.
  • Item
    Aurora kinase inhibitors synergize with paclitaxel to induce apoptosis in ovarian cancer cells
    (Georgia Institute of Technology, 2008-12-11) Scharer, Christopher D. ; Laycock, Noelani ; Osunkoya, Adeboye O. ; Logani, Sanjay ; McDonald, John F. ; Benigno, Benedict B. ; Moreno, Carlos S.
    Background: A large percentage of patients with recurrent ovarian cancer develop resistance to the taxane class of chemotherapeutics. While mechanisms of resistance are being discovered, novel treatment options and a better understanding of disease resistance are sorely needed. The mitotic kinase Aurora-A directly regulates cellular processes targeted by the taxanes and is overexpressed in several malignancies, including ovarian cancer. Recent data has shown that overexpression of Aurora-A can confer resistance to the taxane paclitaxel. Methods: We used expression profiling of ovarian tumor samples to determine the most significantly overexpressed genes. In this study we sought to determine if chemical inhibition of the Aurora kinase family using VE-465 could synergize with paclitaxel to induce apoptosis in paclitaxel-resistant and sensitive ovarian cancer cells. Results: Aurora-A kinase and TPX2, an activator of Aurora-A, are two of the most significantly overexpressed genes in ovarian carcinomas. We show that inhibition of the Aurora kinases prevents phosphorylation of a mitotic marker and demonstrate a dose-dependent increase of apoptosis in treated ovarian cancer cells. We demonstrate at low doses that are specific to Aurora-A, VE-465 synergizes with paclitaxel to induce 4.5-fold greater apoptosis than paclitaxel alone in 1A9 cells. Higher doses are needed to induce apoptosis in paclitaxel-resistant PTX10 cells. Conclusion: Our results show that VE-465 is a potent killer of taxane resistant ovarian cancer cells and can synergize with paclitaxel at low doses. These data suggest patients whose tumors exhibit high Aurora-A expression may benefit from a combination therapy of taxanes and Aurora-A inhibition.
  • Item
    Epigenetic changes within the promoter region of the HLA-G gene in ovarian tumors
    (Georgia Institute of Technology, 2008-05-22) Menendez, Laura ; Walker, L. DeEtte ; Matyunina, Lilya V. ; Totten, Kimberly A. ; Benigno, Benedict B. ; McDonald, John F.
    Background: Previous findings have suggested that epigenetic-mediated HLA-G expression in tumor cells may be associated with resistance to host immunosurveillance. To explore the potential role of DNA methylation on HLA-G expression in ovarian cancer, we correlated differences in HLA-G expression with methylation changes within the HLA-G regulatory region in an ovarian cancer cell line treated with 5-aza-deoxycytidine (5-aza-dC) and in malignant and benign ovarian tumor samples and ovarian surface epithelial cells (OSE) isolated from patients with normal ovaries. Results: A region containing an intact hypoxia response element (HRE) remained completely methylated in the cell line after treatment with 5-aza-dC and was completely methylated in all of the ovarian tumor (malignant and benign) samples examined, but only variably methylated in normal OSE samples. HLA-G expression was significantly increased in the 5-aza-dC treated cell line but no significant difference was detected between the tumor and OSE samples examined. Conclusion: Since HRE is the binding site of a known repressor of HLA-G expression (HIF-1), we hypothesize that methylation of the region surrounding the HRE may help maintain the potential for expression of HLA-G in ovarian tumors. The fact that no correlation exists between methylation and HLA-G gene expression between ovarian tumor samples and OSE, suggests that changes in methylation may be necessary but not sufficient for HLA-G expression in ovarian cancer.
  • Item
    Evidence that p53-mediated cell-cycle-arrest inhibits chemotherapeutic treatment of ovarian carcinomas
    (Georgia Institute of Technology, 2007-05-17) Moreno, Carlos S. ; Matyunina, Lilya V. ; Dickerson, Erin B. ; Schubert, Nina ; Bowen, Nathan J. ; Logani, Sanjay ; Benigno, Benedict B. ; McDonald, John F.
    Gene expression profiles of malignant tumors surgically removed from ovarian cancer patients pre-treated with chemotherapy (neo-adjuvant) prior to surgery group into two distinct clusters. One group clusters with carcinomas from patients not pretreated with chemotherapy prior to surgery (C-L), while the other clusters with non-malignant adenomas (A-L). We show here that although the C-L cluster is preferentially associated with p53 loss-of-function (LOF) mutations, the C-L cluster cancer patients display a more favorable clinical response to chemotherapy as evidenced by enhanced long-term survivorships. Our results support a model whereby p53 mediated cell-cycle-arrest/DNA repair serves as a barrier to optimal chemotherapeutic treatment of ovarian and perhaps other carcinomas and suggest that inhibition of p53 during chemotherapy may enhance clinical outcome.
  • Item
    Emerging Roles for PAX8 in Ovarian Cancer and Endosalpingeal Development
    (Georgia Institute of Technology, 2007-02) Bowen, Nathan J. ; Logani, Sanjay ; Dickerson, Erin B. ; Kapa, Laura B. ; Akhtar, Mariam ; Benigno, Benedict B. ; McDonald, John F.
    Objectives. Epithelial ovarian carcinomas develop from ovarian surface epithelia that undergo complex differentiation to form distinguishable phenotypes resembling those of the epithelia of the female urogenital regions. While previous studies have implicated regulatory developmental homeobox (HOX) genes in this process, other factors responsible for this differentiation are largely unknown. Aberrant transcriptional expression of PAX8 has been reported in epithelial ovarian cancer, prompting us to initiate the molecular characterization of this master regulatory gene in ovarian cancer development. Methods. Immunohistochemistry, immunoblotting and RT-PCR were used to investigate the presence of PAX8 and its protein products in epithelial ovarian cancer subtypes, normal ovarian surface epithelia, ovarian inclusion cysts and normal endosalpingeal epithelia. Results. In this report, we confirm microarray results indicating that the transcription factor, PAX8, is highly expressed in epithelial ovarian cancer but absent from the precursor ovarian surface epithelia of healthy individuals. Furthermore, we report that PAX8 is localized to the nucleus of non-ciliated epithelia in simple ovarian epithelial inclusion cysts and in three epithelial ovarian cancer subtypes (serous, endometrioid and clear cell). We also determined that PAX8 is expressed in the non-ciliated, secretory cells of healthy fallopian tube mucosal linings but not in the adjacent ciliated epithelia. Conclusion. These findings support the hypothesis that PAX8 plays parallel roles in the development of epithelial ovarian cancer and in the developmental differentiation of coelomic epithelia into endosalpingeal epithelia.
  • Item
    Identification of candidate methylation-responsive genes in ovarian cancer
    (Georgia Institute of Technology, 2007-01-25) Menendez, Laura ; Walker, L. DeEtte ; Matyunina, Lilya V. ; Dickerson, Erin B. ; Bowen, Nathan J. ; Benigno, Benedict B. ; McDonald, John F.
    Background: Aberrant methylation of gene promoter regions has been linked to changes in gene expression in cancer development and progression. Genes associated with CpG islands (CGIs) are especially prone to methylation, but not all CGI-associated genes display changes in methylation patterns in cancers. Results: In order to identify genes subject to regulation by methylation, we conducted gene expression profile analyses of an ovarian cancer cell line (OVCAR-3) before and after treatment with the demethylating agent 5-aza-deoxycytidine (5-aza-dC). An overlapping subset of these genes was found to display significant differences in gene expression between normal ovarian surface epithelial cells and malignant cells isolated from ovarian carcinomas. While 40% of all human genes are associated with CGIs, > 94% of the overlapping subset of genes is associated with CGIs. The predicted change in methylation status of genes randomly selected from the overlapping subset was experimentally verified. Conclusion: We conclude that correlating genes that are upregulated in response to 5-aza-dC treatment of cancer cell lines with genes that are down-regulated in cancer cells may be a useful method to identify genes experiencing epigenetic-mediated changes in expression over cancer development.
  • Item
    Gene expression profiling of epithelial ovarian tumours correlated with malignant potential
    (Georgia Institute of Technology, 2004-10-07) Warrenfeltz, Susanne ; Pavlik, Stephen ; Datta, Susmita ; Kraemer, Eileen T. ; Benigno, Benedict B. ; McDonald, John F.
    Background Epithelial ovarian tumours exhibit a range of malignant potential, presenting distinct clinical phenotypes. Improved knowledge of gene expression changes and functional pathways associated with these clinical phenotypes may lead to new treatment targets, markers for early detection and a better understanding of disease progression. Results Gene expression profiling (Affymetrix, U95Av2) was carried out on 18 ovarian tumours including benign adenomas, borderline adenocarcinomas of low malignant potential and malignant adenocarcinomas. Clustering the expression profiles of samples from patients not treated with chemotherapy prior to surgery effectively classified 92% of samples into their proper histopathological group. Some cancer samples from patients treated with chemotherapy prior to surgery clustered with the benign adenomas. Chemotherapy patients whose tumours exhibited benign-like expression patterns remained disease free for the duration of this study as indicated by continued normal serum CA-125 levels. Statistical analysis identified 163 differentially expressed genes: 61 genes under-expressed in cancer and 102 genes over-expressed in cancer. Profiling the functional categories of co-ordinately expressed genes within this list revealed significant correlation between increased malignant potential and loss of both IGF binding proteins and cell adhesion molecules. Interestingly, in several instances co-ordinately expressed genes sharing biological function also shared chromosomal location. Conclusion Our findings indicate that gene expression profiling can reliably distinguish between benign and malignant ovarian tumours. Expression profiles of samples from patients pre-treated with chemotherapy may be useful in predicting disease free survival and the likelihood of recurrence. Loss of expression of IGF binding proteins as well as specific cell adhesion molecules may be a significant mechanism of disease progression in ovarian cancer. Expression levels in borderline tumours were intermediate between benign adenomas and malignant adenocarcinomas for a significant portion of the differentially expressed genes, suggesting that borderline tumours are a transitional state between benign and malignant tumours. Finally, genes displaying coordinated changes in gene expression were often genetically linked, suggesting that changes in expression for these genes are the consequence of regional duplications, deletions or epigenetic events.
  • Item
    L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas
    (Georgia Institute of Technology, 2004-04-26) Menendez, Laura ; Benigno, Benedict B. ; McDonald, John F.
    Wide-spread hypomethylation of CpG dinucleotides is characteristic of many cancers. Retrotransposons have been identified as potential targets of hypomethylation during cellular transformation. We report the results of an preliminary examination of the methylation status of CpG dinucleotides associated with the L1 and HERV-W retrotransposons in benign and malignant human ovarian tumors. We find a reduction in the methylation of CpG dinucleotides within the promoter regions of these retroelements in malignant relative to non-malignant ovarian tissues. Consistent with these results, we find that relative L1 and HERV-W expression levels are elevated in representative samples of malignant vs. non-malignant ovarian tissues.