Person:
Ammar, Mostafa H.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Message Ferries as Generalized Dominating Sets in Intermittently Connected Mobile Networks
    (Georgia Institute of Technology, 2009) Ammar, Mostafa H. ; Polat, Bahadir K. ; Sachdeva, Pushkar ; Zegura, Ellen W.
    Message ferrying is a technique for routing data in wireless and mobile networks in which one or more mobile nodes are tasked with storing and carrying data between sources and destinations. To achieve connectivity between all nodes, message ferries may need to relay data to each other. While useful as a routing technique for wireless mobile networks in general, message ferrying is particularly useful in intermittently connected networks where traditional MANET routing protocols are not usable. A wireless and mobile network is said to possess intrinsic message ferrying capability if a subset of the nodes can act as message ferries by virtue of their own mobility pattern, without introducing additional nodes or modifying existing node mobility. Our goal in this work is to provide a formalism by which one can characterize intrinsic message ferrying capability. We first observe that the use of message ferries is the mobile generalization of the well-known use of connected dominating set-based routing in wireless networks. We next consider the problem of identifying the set of nodes in a mobile network which can act as message ferries by virtue of their mobility pattern. To this end, we define the concept of a connected message ferry dominating set (CMFDS) in a manner that achieves data delivery within certain performance bounds. We then develop algorithms that can be used to find such a set within a mobile, wireless network. The general CMFDS algorithm is built around a core algorithm that determines whether a single node in the network can act as a ferry. We provide some illustrative examples to show the application of our algorithm to several mobility patterns.
  • Item
    Hierarchical Power Management in Disruption Tolerant Networks with Traffic-Aware Optimization
    (Georgia Institute of Technology, 2006) Jun, Hyewon ; Ammar, Mostafa H. ; Corner, Mark D. ; Zegura, Ellen W.
    Disruption tolerant networks (DTNs) are wireless mobile networks that are characterized by frequent partitions and long delays. Such networks can be used in highly-challenged environment in which energy resources are limited. Efficient power management, therefore, is essential for their success. In this paper, we present a hierarchical power management in DTNs where nodes are equipped with two complementary radios: a long-range, high power radio and a short range, low-power radio. In this architecture, energy can be conserved by using the low-power radio to discover communication opportunities with other nodes and then wake up the high-power radio to undertake the data transmission. We develop a generalized power management framework and its variations around this idea and evaluate their relative performance. In addition, for the case in which traffic load can be predicted, we devise approximation algorithms to control the sleep/wake-up cycling to provide maximum energy conservation while discovering enough communication opportunities to handle a given traffic load. We evaluate our schemes and our choice of parameters through ns-2 simulations. Our simulation results show that the generalized power management mechanism could augment the usefulness of the low power radio and achieve better energy efficiency than mechanisms relying on one radio for discovery. In addition, our approximation algorithms reduce energy consumption from 73% to 93% compared with the case without power management. We also observe that while an additional low power radio does reduce the energy consumption needed for discovery, the improvement could be negligible in mobile DTNs due to the low density of nodes.
  • Item
    Overlay Network Assignment in PlanetLab With NetFinder
    (Georgia Institute of Technology, 2006) Zhu, Yong ; Ammar, Mostafa H.
    PlanetLab has been widely used in the networking community to test and deploy user-defined overlays. Serving as a meta testbed to support multiple overlay networks, PlanetLab has significantly lowered the barriers to build new overlays. However, PlanetLab users always face the problem of selecting a set of nodes and interconnecting them to form the desired overlay network. Unfortunately, such a task is usually carried out manually by individual users and sometimes in an ad-hoc manner. In this paper, we develop NetFinder, an automatic overlay network configuration tool to efficiently allocate PlanetLab resources to individual overlays. NetFinder continuously monitors the resource utilization of PlanetLab and accepts a user-defined overlay topology as input and selects the set of PlanetLab nodes and their interconnection for the user overlay. Experimental results indicate that overlay networks constructed by NetFinder have more stable and significantly higher bandwidth than alternative schemes and near optimal available CPU.
  • Item
    Capacity Enhancement Using Throw-Boxes in Mobile Delay Tolerant Networks
    (Georgia Institute of Technology, 2006) Zhao, Wenrui ; Chen, Yang ; Ammar, Mostafa H. ; Corner, Mark D. ; Levine, Brian ; Zegura, Ellen W.
    Delay tolerant networks (DTNs) are a class of emerging networks that are subject to frequent and long-duration partitions. Due to intermittent connectivity, DTNs might be significantly limited in supporting application needs, for example, leading to low throughput or high delay. To address this problem, we propose the use of throw-boxes to improve data delivery performance. Throw-boxes are small, inexpensive devices equipped with wireless interfaces and deployed to relay data between mobile nodes. Being small and inexpensive, throwboxes represent a flexible and cost-effective approach to enhance network capacity. In this paper, we systematically study two inter-related issues, namely deployment and routing, in using throw-boxes for throughput enhancement. Specifically, we develop algorithms for throw-box deployment and data forwarding under various routing strategies, including single path, multi-path and epidemic routing. Using extensive ns simulations, we evaluate the utility of throw-boxes and the impact of various routing and deployment strategies on network performance. Our objective is to guide the design and operations of throw-box-enhanced DTNs. We find that throw-boxes are very effective in improving both data delivery ratio and delay, especially for multi-path routing and environments with regular node movement.