Person:
Ammar, Mostafa H.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 1 of 1
  • Item
    Exploiting the Predictability of TCP’s Steady-state Behavior to Speed Up Network Simulation
    (Georgia Institute of Technology, 2002-10) He, Qi ; Ammar, Mostafa H. ; Riley, George F. ; Fujimoto, Richard M.
    In discrete-event network simulation, a significant portion of resources and computation are dedicated to the creation and processing of packet transmission events. For large-scale network simulations with a large number of high-speed data flows, the processing of packet events is the most time consuming aspect of the simulation. In this work we develop a technique that saves on the processing of packet events for TCP flows using the well established results showing that the average behavior of a TCP flow is predictable given a steady-state path condition. We exploit this to predict the average behavior of a TCP flow over a future period of time where steady-state conditions hold, thus allowing for a reduction (or elimination) of the processing required for packet events during this period. We consider two approaches to predicting TCP’s steady-state behavior: using throughput formulas or by direct monitoring of a flow’s throughput in a simulation. We design a simulation framework that provides the flexibility to incorporate this method of simulating TCP packet flows. Our goal is 1) to accommodate different network configurations, on/off flow behaviors and interaction between predicted flows and packet-based flows; and 2) to preserve the statistical behavior of every entity in the system, from hosts to routers to links, so as to maintain the accuracy of the network simulation as a whole. In order to illustrate the promise of this idea we implement it in the context of the ns2 simulation system. A set of experiments illustrate the speedup and approximation of the simulation framework under different scenarios and for different network performance metrics.