Person:
Johnson, Eric N.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Georgia Tech Team Entry for the 2012 AUVSI International Aerial Robotics Competition
    (Georgia Institute of Technology, 2012-08) Magree, Daniel ; Bershadsky, Dmitry ; Wang, Xo ; Valdez, Pierre ; Antico, Jason ; Coder, Ryan ; Dyer, Timothy ; George, Eohan ; Johnson, Eric N.
    This paper describes the details of a Quadrotor Unmanned Aerial Vehicle capable of exploring cluttered indoor areas without relying on any external navigational aids. A Simultaneous Localization and Mapping (SLAM) algorithm is used to fuse information from a laser range sensor, an inertial measurement unit, and an altitude sonar to provide relative position, velocity, and attitude information. A wall avoidance and guidance system is implemented to ensure that the vehicle explores maximum indoor area. A model reference adaptive control architecture is used to ensure stability and mitigation of uncertainties. Finally, an object detection system is implemented to identify target objects for retrieval.
  • Item
    Georgia Tech Team Entry for the 2011 AUVSI International Aerial Robotics Competition
    (Georgia Institute of Technology, 2011-08) Chowdhary, Girish ; Magree, Daniel ; Bershadsky, Dmitry ; Dyer, Timothy ; George, Eohan ; Hashimoto, Hiroyuki ; Kalghatgi, Roshan ; Johnson, Eric N.
    his paper describes the details of a Quadrotor Unmanned Aerial Vehicle capable of exploring cluttered indoor areas without relying on any external navigational aids. An elaborate Simultaneous Localization and Mapping (SLAM) algorithm is used to fuse information from a laser range sensor, an inertial measurement unit, and an altitude sonar to provide relative position, velocity, and attitude information. A wall-following guidance rule is implemented to ensure that the vehicle explores maximum indoor area in a reasonable amount of time. A model reference adaptive control architecture is used to ensure stability and mitigation of uncertainties. The vehicle is intended to be Georgia Tech Aerial Robotic Team's entry for the 2011 International Aerial Robotics Competition (IARC) Symposium on Indoor Flight Issues.