Person:
Turk, Greg

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Vector Field Design on Surfaces
    (Georgia Institute of Technology, 2004) Zhang, Eugene ; Mischaikow, Konstantin Michael ; Turk, Greg
    Vector field design on surfaces is necessary for many graphics applications: example-based texture synthesis, non-photorealistic rendering, and fluid simulation. A vector field design system should allow a user to create a large variety of complex vector fields with relatively little effort. In this paper, we present a vector field design system for surfaces that allows the user to control the number of singularities in the vector field and their placement. Our system combines basis vector fields to make an initial vector field that meets the user's specifications. The initial vector field often contains unwanted singularities. Such singularities cannot always be eliminated, due to the Poincar'e-Hopf index theorem. To reduce the effect caused by these singularities, our system allows a user to move a singularity to a more favorable location or to cancel a pair of singularities. These operations provide topological guarantees for the vector field in that they only affect the user-specified singularities. Other editing operations are also provided so that the user may change the topological and geometric characteristics of the vector field. We demonstrate our vector field design system for several applications: example-based texture synthesis, painterly rendering of images, and pencil sketch illustrations of smooth surfaces.
  • Item
    Feature-Based Surface Parameterization and Texture Mapping
    (Georgia Institute of Technology, 2003) Zhang, Eugene ; Mischaikow, Konstantin Michael ; Turk, Greg
    Surface parameterization is necessary for many graphics tasks: texture-preserving simplification, remeshing, surface painting, and pre-computation of solid textures. The stretch caused by a given parameterization determines the sampling rate on the surface. In this paper, we propose an automatic parameterization method that segments a surface into patches that are then flattened with little stretch. We observe that many objects consist of regions of relative simple shapes, each of which has a natural parameterization. Therefore, we propose a three-stage feature based patch creation method for manifold mesh surfaces. The first two stages, genus reduction and feature identification, are performed with the help of distance-based Morse functions. In the last stage, we create one or two patches for each feature region based on a covariance matrix of the feature's surface points. To reduce the stretch during patch unfolding, we notice that the stretch is a 2x2 tensor which in ideal situations is the identity. Therefore, we propose to use the Green-Lagrange tensor to measure and to guide the optimization process. Furthermore, we allow the boundary vertices of a patch to be optimized by adding scaffold triangles. We demonstrate our feature identification and patch unfolding methods for several textured models. Finally, to evaluate the quality of a given parameterization, we propose an image-based error measure that takes into account stretch, seams, smoothness, packing efficiency and visibility.