Person:
Montoya, Joseph P.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Trophic-level interpretation based on δ¹⁵N values: implications of tissue-specific fractionation and amino acid composition
    (Georgia Institute of Technology, 2004-01-30) Schmidt, Katrin ; McClelland, James W. ; Mente, Eleni ; Montoya, Joseph P. ; Atkinson, Angus ; Voss, Maren
    Stable nitrogen isotope ratios are routinely used to disentangle trophic relationships. Several authors have discussed factors in addition to diet that might contribute to variability in δ¹⁵N of consumers, but few studies have explored such factors in detail. For a better understanding of tissue-specific differences in δ¹⁵N, we examined postlarval euphausiids across a variety of seasons and regions in the Southern Ocean. The concentration and δ¹⁵N of individual amino acids were analysed to account for both the biochemical and physiological underpinnings of the observed bulk δ¹⁵N. Euphausiids showed consistent d15N differences of 1 to 2 ” between the digestive gland and abdominal segment, and between reproductively active males and females. These differences in bulk δ¹⁵N were accompanied by variations in relative proportions of amino acids (up to 5 mol %) and their δ¹⁵N (up to 11‰). Aspartic acid and glutamic acid had the strongest influence on bulk δ¹⁵N, due to their high abundance and variable δ¹⁵N values. Differences in relative proportions and/or δ¹⁵N of glycine alanine were also important for bulk δ¹⁵N values. Isotopic variations in amino acids between gender and tissues were explained by dominant internal processes such as protein synthesis or degradation for energy supply, and by differences in amino acid pool sizes. Despite the offset in bulk δ¹⁵N between females and males, several lines of evidence suggested that their trophic levels were similar. Thus, specific amino acid composition and metabolism may confound trophic level interpretations of bulk δ¹⁵N values. Micronekton are normally analyzed whole in isotopic studies, and we suggest that their analyses should be restricted to comparable tissues such as muscles.
  • Item
    An extensive bloom of the diazotrophic cyanobacterium, Trichodesmium, in the Central Arabian Sea during the spring intermonsoon
    (Georgia Institute of Technology, 1998-10-22) Capone, Douglas G. ; Subramaniam, Ajit ; Montoya, Joseph P. ; Voss, Maren ; Humborg, Christoph ; Johansen, Anne M. ; Siefert, Ronald L. ; Carpenter, Edward J.
    We encountered an extensive surface bloom of the N2 fixing cyanobacterium Trichodesmium erythraeum in the central basin of the Arabian Sea during the spring inter-monsoon of 1995. The bloom, which occurred during a period of calm winds and relatively high atmospheric iron content, was metabolically active. Carbon fixation by the bloom represented about one-quarter of water column primary productivity while input by N2 fixation could account for a major fraction of the estimated 'new' N demand of primary production. Isotopic measurements of the N in surface suspended material confirmed a direct contribution of N2 fixation to the organic nitrogen pools of the upper water column. Retrospective analysis of NOAA-12 AVHRR imagery indicated that blooms covered up to 2 x 106 km2, or 20% of the Arabian Sea surface, during the period from 22 to 27 May 1995. In addition to their biogeochemical impact, surface blooms of this extent may have secondary effects on sea surface albedo and light penetration as well as heat and gas exchange across the air-sea interface. A preliminary extrapolation based on our observed, non-bloom rates of N2 fixation from our limited sampling in the spring intermonsoon, including a conservative estimate of the input by blooms, suggest N2 fixation may account for an input of about 1 Tg N yr-1. This is substantial, but relatively minor compared to current estimates of the removal of N through denitrification in the basin. However, N2 fixation may also occur in the central basin through the mild winter monsoon, be considerably greater during the fall intermonsoon than we observed during the spring intermonsoon, and may also occur at higher levels in the chronically oligotrophic southern basin. Ongoing satellite observations will help to determine more accurately the distribution and density of Trichodesmium in this and other tropical oceanic basins, as well as resolving the actual frequency and duration of bloom occurrence.
  • Item
    Nitrogen stable isotope dynamics in the central Baltic Sea: influence of deep-water renewal on the N-cycle
    (Georgia Institute of Technology, 1997-11-17) Voss, Maren ; Nausch, Günter ; Montoya, Joseph P.
    The vertical profiles of NO₃-, NH₄+, O₂, and H₂S as well as the isotopic composition of particulate nitrogen and NH4+ were sampled yearly over a 5 yr period in the Gotland Basin to follow biochemical changes in N-cycling resulting from an inflow of saltwater. The water column has a pronounced interface at 80 to 120 m depth which separates warm (13°C) brackish surface waters (salinity 7 psu) and the underlying cold winter water layer from more saline (9 to 11 psu) bottom waters originating from irregularly occurring inflow events of oxygenated, nitrate-rich North Sea water masses. Anoxic conditions usually exist in the deep stagnant waters, where nutrients only occur as ammonia, which reaches concentrations of up to 30 µmol l-1. In spring 1993 large amounts of nitrate- and oxygen-rich water were transported into the deep waters of the Gotland Basin, thus displacing the stagnant deep water body. With the inflow, oxygen and nitrate concentrations rose by 3 ml l-1 and more than 10 µmol l-1 respectively. During the following years the concentrations of oxygen in the near bottom layer decreased again. The isotope signature of the suspended particles in the layer below 120 m reflects these changes: in 1993 the mean stable nitrogen isotope value in the anoxic water was at 1.1o/oo. We assume bacterial incorporation of ammonia to be the mechanism producing isotopically light particles. A fractionation factor calculated for ammonia uptake of 11 ‰ supports this hypothesis. During the following years the particles in the oxygenated water column were around 8o/oo which is characteristic for microbially degraded material. The surface sediment of the central Gotland Sea has a low isotope signal of 3 to 4o/oo. These findings might have consequences for the interpretation of sediment δ15N data where low isotope contents are usually taken as an indicator of high nutrient concentrations in surface waters.