Person:
Montoya, Joseph P.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 1 of 1
  • Item
    Extensive bloom of a N₂-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean
    (Georgia Institute of Technology, 1999-08-20) Carpenter, Edward J. ; Montoya, Joseph P. ; Burns, James ; Mulholland, Margaret R. ; Subramaniam, Ajit ; Capone, Douglas G.
    We encountered an extensive bloom of the colonial diatom Hemiaulus hauckii along a 2500 km cruise track off the NE coast of South America in autumn 1996. Each diatom cell contained the heterocystous, N₂-fixing cyanobacterial endosymbiont Richelia intracellularis. Surface Richelia heterocyst (and filament) densities increased from <100 to >10⁶ heterocyst l⁻¹ in the bloom. Total abundance ranged from 10⁶ heterocyst m⁻² outside the bloom to over 10¹⁰ heterocyst m⁻² within the bloom. Rates of primary production averaged 1.2 g C m⁻² d⁻¹, higher than typical for oligotrophic open ocean waters. N₂ fixation during the bloom by the Richelia/Hemiaulus association added an average of 45 mg N m⁻² d⁻¹, to the water column. The relative importance of NH₄⁺ uptake over the course of the bloom increased from 0 to 42% of total N uptake by the Hemiaulus/Richelia association. N2 fixation by Richelia exceeded estimates of 'new' N flux via NO₃ diffusion from deep water and, together with additional N₂ fixation by the cyanobacterium Trichodesmium, could supply about 25% of the total N demand through the water column during the bloom. Suspended particles and zooplankton collected within the bloom were depleted in ¹⁵N, reflecting the dominant contribution of N₂ fixation to the planktonic N budget. The bloom was spatially extensive, as revealed by satellite imagery, and is calculated to have contributed about 0.5 Tg N to the euphotic zone. Such blooms may represent an important and previously unrecognized source of new N to support primary production in nutrient-poor tropical waters. Furthermore, this bloom demonstrates that heterocystous cyanobacteria can also make quantitatively important contributions of N in oceanic water column environments.