Organizational Unit:
School of Chemistry and Biochemistry

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 250
  • Item
    Amino Acid Profiling by Reactive Desorption Electrospray Ionization Tandem Mass Spectrometry (DESI-MS/MS)
    (Georgia Institute of Technology, 2009-12) Rizzo, David G.
    Desorption electrospray ionization mass spectrometry (DESI MS) has gained significant recognition over the past few years because of its simplicity and rapid throughput capabilities, allowing for the direct analysis of samples with a wide variety of sizes, shapes, and chemistries. Addition of various reagents into the DESI spray solvent enables atmospheric pressure ion molecule reactions between these reagents in the charged micro droplets and analyte molecules on the sample surface affording improved selectivity and sensitivity in some cases. Presented is a rapid screening method for amino acids (aas) based on reactive DESI. Amino acids have been shown to play key roles in the regulation of cellular processes. They are also particularly vital in the determination of metabolic disorders such as phenylketonurea, homocystinuria, and tyrosinemia. The most specific and reliable methods for diagnosing these disorders are based on the determination of aas in body fluids using methodologies such as gas/liquid chromatography, tandem MS, and various combinations thereof. However, these methods are usually time-consuming, increasing the time physicians wait before administering treatment or regulating the diet of diseased infants. The reactive DESI approach presented here is based on the formation of stable noncovalent complexes between alpha-cyclodextrin (dissolved in the spray solvent) and amino acids present in the sample affording a selective method for their detection. However, the selectivity and sensitivity of screening for aas was improved by performing the MS analysis in the multiple reaction monitoring mode when using a quadrupole ion trap or by the precursor ion scan when using a triple quadrupole MS instrument, affording an average twenty-five times sensitivity improvement compared to analysis in full scan mode. The observation of similar complexes with various carboxylic acids including formic acid and acetic acid, and evidence from tandem MS experiments indicate that amino acid:alpha-cyclodextrin complexation reactions occur by hydrogen bonding interaction with carboxyl group of the aas. The specificity and sensitivity provided by this approach seems very promising for applications in the rapid screening of aas directly from body fluids including urine and plasma for amino acid disorders in a clinical setting.
  • Item
    Biofuels from lignin and novel biodiesel analysis
    (Georgia Institute of Technology, 2009-11-17) Nagy, Máté
    The first part of the thesis presents a study based on the forest biorefinery concept, which involves converting a pulp mill into a multi-purpose biofuels, biomaterials, and biopower production facility in which these products are produced in an environmentally compatible and sustainable manner. A key challenge in this process is the recovery of lignin from process streams such that it can be utilized in a variety of innovative green chemistry processes The first study examines the fundamental chemical structure of LignoBoost derived lignin recovered from Kraft pulping streams using an acid precipitation/washing methodology. Functional group analysis and molecular weight profiles were determined by nuclear magnetic resonance (NMR) and size exclusion chromatography. These findings gave valuable insight into the physical properties and the determining chemical properties of this currently underutilized, renewable bioresource. The second study is based on the future second generation bioethanol production process, where ethanol produced from lignocellulosic materials will bring about the co-production of significant amounts of under-utilized lignin. The study examines the potential of conventional heterogeneous and novel homogeneous catalysts for the selective cleavage of the aryl-O-aryl and aryl-O-aliphatic linkages of ethanol organosolv lignin to convert it from a low grade fuel to potential fuel precursors or other value added chemicals. The experimental data demonstrated that aryl-O-aryl and aryl-O-aliphatic linkages could be cleaved and the hydrogenated lignin had a decrease in oxygen functionality and the formation of products with lower oxygen content. The second part of this thesis reports the development and optimization of a novel qualitative method for the determination of the various types of hydroxyl groups present in biodiesel production streams. In the first study, the use of 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane as a phosphitylation reagent for quantitative ³¹P-NMR analysis of the hydroxyl groups in biodiesel process samples has been developed. Subsequently a characteristic chemical shifts library is developed with model compounds to provide quantitative data on the concentration of biodiesel precursors, intermediates and final product. The last part of this thesis depicts the results of an industrial trial based on the novel biodiesel analytical method developed earlier.
  • Item
    FT-IR and quantum cascade laser spectroscopy towards a hand-held trace gas sensor for benzene, toluene, and xylenes (BTX)
    (Georgia Institute of Technology, 2009-11-16) Young, Christina Rachel
    The work described herein focuses on FT-IR and quantum cascade laser (QCL) based studies towards the development of compact and portable trace gas sensor for benzene, toluene, and xylenes (BTX). FT-IR broadband radiation was used to probe the mid-infrared fingerprint region for quantitatively detecting trace gas levels of BTX. Using direct absorption through a hollow waveguide, parts-per-million (ppm) detection limits for BTX with a response time of 39 seconds was demonstrated. Univariate calibration provided limits of detection (3σ) for benzene, toluene, and meta-xylene at 5, 17, and 11 ppm, respectively. Multivariate calibration using partial least squares regression algorithms were used to simulate real-world conditions with multiple analytes present within a complex sample. A calibration model was built with 110 training set standards enabled by using a customized gas mixing system. Furthermore, a preconcentration/thermal desorption (TD) step was added to the FT-IR HWG trace gas sensor enabling parts-per-billion detection of BTX. A univariate calibration was established in the laboratory with certified gas standards over a dynamic range of 1000 - 100 ppb for benzene, toluene, and the xylenes. The sensor was then taken to an industrial site during a field measurement campaign for the quantitative determination of BTX in field air samples. The laboratory calibration was used to predict unknown concentrations which were in close agreement with industrial hygiene standard techniques, and industrial prototype analyzers, that were simultaneously operated in the field environment. In addition to FT-IR, quantum cascade laser spectroscopy was also investigated due to enhanced spectral density and efforts to precisely overlap emission with analyte absorption. Particular efforts were dedicated on a novel principle for consistent and deliberate QCL emission wavelength selection by varying the QCL cavity length. These studies experimentally confirmed that using this straight-forward post-processing technique, emission wavelength tuning across a range of one hundred wavenumbers range may be achieved. This tuning range was experimentally demonstrated for a QCL emitting across an entire absorption feature of carbon dioxide by tailoring the length of the cavity. Additionally, using an external cavity (EC) - QCL combined with a HWG gas sensor module for the first time enabled the quantitative and simultaneous determination of ethyl chloride, trichloromethane, and dichloromethane within exponential dilution experiments at ppb limits of detection. Multianalyte detection was demonstrated utilizing partial least squares regression for quantitative discrimination of individual constituents within a mixture, yet applying a single broadly tunable QCL light source.
  • Item
    Third-order nonlinear optical properties of conjugated polymers and blends
    (Georgia Institute of Technology, 2009-11-16) Chi, San-Hui
    This thesis is concerned with the material processing, photophysical and third-order nonlinear optical responses, and applications of a set of conjugated polymers in the telecommunication regions. Polyacetylene-based third-order nonlinear optical materials were chosen as candidates for all-optical signal and image processing. Substituted polyacetylenes were obtained using ring-opening metathesis polymerization of mono-substituted cyclooctatetraenes. Polymerization and processing conditions have been developed to generate thick, large-area films possessing large third-order nonlinearities in the telecommunication bands. The good optical quality of a 200 μm thick substituted polyacetylene film allowed for image correlation via off-resonant degenerated four-wave mixing with improved diffraction efficiency. Poly(2-methoxy-5-(2-ethyl-hexyloxy)-(phenylene vinylene)) (MEH-PPV) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) composites showed strong nonlinear absorption and potential as optical limiters in the region of 700-900 nm. High optical quality, thick film of MEH-PPV:PCBM with the plasticizer dioctylphthalate (DOP) were made. Optical limiting of femtosecond and nanosecond pulses in the near infrared on these composites showed strong power suppression over a broad temporal regime. Femtosecond and nanosecond transient studies on the same thick MEH-PPV:PCBM:DOP composite films and the experimental results showed evidence for the photogeneration of radical ions as being responsible for the enhanced nonlinear absorption and strong optical suppression in the near infrared. Dithienopyrrole-based donor-acceptor copolymers with narrow bandgap showed strong nonlinear absorption and potential as optical limiters in the telecommunication wavelengths. Molecular engineering was applied to manipulate the spectral overlap of two-photon absorption and subsequent nonlinear absorptions. Femtosecond transient spectroscopy showed near infrared transient absorption and 22 - 61% yields of photogenerated charge-transfer species depending on donor-acceptor coupling strength. Torsional fluctuations of the backbone structure potentially affected the excited state behavior. Evidence suggests that ultrafast relaxation occurs to ground state and to long-lived charge-transfer state from the initially excited state. The dispersion of nonlinear absorption measured using the Z-scan method revealed large two-photon absorption cross sections of these polymers in the telecommunication region. Large suppression of nanosecond pulses at 1064 nm was achieved.
  • Item
    Ambient ionization mass spectrometry for the forensic screening of pharmaceuticals and the determination of potential drug candidates
    (Georgia Institute of Technology, 2009-11-12) Nyadong, Leonard
    Ambient mass spectrometry (MS) is a new and growing sub-field in MS which has opened new research avenues, particularly for applications relating to the analysis of solid samples. Results on the implementation and application of ambient MS techniques including: desorption electrospray ionization (DESI) and direct analysis in real time (DART) indicated that these techniques could serve as complementary tools for the rapid qualitative screening of pharmaceuticals, allowing up to two orders of magnitude improvement in throughput compared to traditional methods such as liquid chromatography MS. The selectivity of DESI could be enhanced by performing the experiment in the reactive mode. In this mode, complexation reactions between reagents added to the spray solvent and analytes on the sample surface resulted in analyte stabilization, inhibiting fragmentation. They also resulted in a concomitant enhancement in the analyte surface activity, facilitating their evaporation from secondary droplets culminating in an improvement in sensitivity. Also for drug tablets analysis, the analyte signal dependency on DESI geometrical set-up variables could be mitigated following the careful and controlled addition of an isotopically labeled internal standard (IS) to the sample or by spraying samples with a pair of reagents with different affinities for the analyte. Either of these approaches resulted in an analyte-to-IS signal ratio (in the former) or an analyte complex ratio (in the later), which was largely independent of DESI experimental variables allowing quantitative analysis using this technique. DESI MS was also observed to be a very powerful tool for determining the 2-D distribution of various pharmaceutically important compounds on tablet and tissue surfaces. The ability to map the distribution of molecules of interest by DESI MS has very great implications in drug tablet quality control and in determining the role of chemical signals presented on tissue surfaces. DESI was observed to be limited to ionizing molecules of medium to high polarities without much limitation in terms of mass range, whereas DART was better suited for the analysis of molecules within a broader range of polarities, but within a more limited mass range (up to 800 Da approximately). These limitations were circumvented by implementing a novel multimode ambient ion source, desorption electrospray/metastable-induced ionization (DEMI), which combines various aspects of DESI and DART. Initial experiments with the DEMI ion source demonstrated its ability to enable the simultaneous analysis of molecules within a broader range of polarities and masses than DESI and DART alone.
  • Item
    Dithienopyrrole-based conjugated materials for organic electronics
    (Georgia Institute of Technology, 2009-10-26) Zhang, Xuan
    Dithienopyrrole-based conjugated materials, including oligomers and polymers, for potential organic electronic applications, were designed, synthesized and characterized. The optical and electrochemical properties of these materials were investigated, and their structure-property relationships were studied. Some of the materials can be oxidized (or reduced) chemically or electrochemically. Furthermore, the utility of these materials in organic electronic devices, such as OFETs and OPVs, were assessed. In OFETs, they can function as hole-transport materials with mobilities up to 4.8 × 10-2 cm2/(Vs), and one example serves as an ambipolar material with comparable hole and electron mobilities of 1.2 × 10-3 and 5.8 ×10-4 cm2/(Vs), respectively. Some of the materials can also be used as electron donors in OPVs in conjunction with PCBM, and exhibited power conversion efficiencies up to 1.4% after optimizations. They may also be used in other applications such as electrochromic devices, photodetectors, and optical limiting.
  • Item
    Dynamic dark state depletion a path to high sensitivity imaging
    (Georgia Institute of Technology, 2009-10-06) Richards, Christopher I.
    Photophysical characterization of several species of fluorescent silver nanoclusters, encapsulated in oligonucleotide scaffolds, was achieved at the bulk and single molecule level. These studies reveal the presence of a short-lived microsecond blinking component which leads to higher emission rates than exhibited by common organic dyes. This dark state was found to be photo-accessible with a very efficient depopulation transition leading to repopulation of the emissive state. Secondary excitation on resonance with this transition significantly shortens the residence time in the dark state giving rise to as much as 5-fold fluorescence enhancement. Manipulation of the secondary laser can be used to impose a regularly modulated waveform onto the fluorescent signal. Signal processing techniques can be employed to extract the modulated signal from large backgrounds, leading to drastically improved sensitivity. This new imaging concept can be extended, beyond Ag nanoclusters, to common organic fluorophores that demonstrate large dark state quantum yields. These fluorophores simultaneously illustrate the utility of this technique and help to define a general set of parameters for engineering ideal dyes for modulated signal extraction. Ideally suited for fluorescence enhancement, FRET pairs can be used to engineer a wide range of modulatable systems, based on detecting donor emission in the presence of a laser directly exciting the acceptor. The utility of Ag nanoclusters, organic dyes, and FRET systems for improved sensitivity are investigated in this work.
  • Item
    Electronic and optical properties of hybrid gold - organic dye systems
    (Georgia Institute of Technology, 2009-10-01) Malicki, Michal
    In order to gain insights into the electronic interactions between metallic gold and self-assembled monolayers composed of π-conjugated thiols, a series of thiol-containing molecules based on a stilbene backbone were synthesized and assembled on gold surface. The resulted monolayers were characterized with a variety of surface-sensitive techniques and the electronic properties of the obtained surfaces were studied with the use of ultraviolet photoelectron spectroscopy. Work-function changes and alignment of the molecular energy levels with respect to the Fermi level of the metal were investigated and important insights regarding the electronic properties of the metal / organic interfaces were obtained. Another aspect of interactions between organic dyes and metallic gold was studied in the context of spectroscopic properties of systems incorporating gold nanoparticles with organic fluorophores covalently attached to the nanoparticle surface. Ultrafast dynamics of the excited-state deactivation of the organic fluorophores attached to the surface of gold nanoparticles were studied with the use of a fs transient absorption technique. It was found that the close proximity of a gold nanoparticle had a profound impact on the excited-state lifetime of the studied organic fluorophore. The influence of the structure of the studied systems on the excited-state deactivation dynamics of the organic fluorophores was described.
  • Item
    Materials for eye and sensor protection
    (Georgia Institute of Technology, 2009-09-30) Perry, Joseph W. ; Marder, Seth R.
  • Item
    A precollege polymer education program
    (Georgia Institute of Technology, 2009-09-21) Collard, David M.