Organizational Unit:
Space Systems Design Laboratory (SSDL)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Tempest: Crew Exploration Vehicle Concept
    (Georgia Institute of Technology, 2005-07) Hutchinson, Virgil L., Jr. ; Olds, John R. ; Alemany, Kristina ; Christian, John A., III ; Clark, Ian G. ; Crowley, John ; Krevor, Zachary C. ; Rohrschneider, Reuben R. ; Thompson, Robert W. ; Young, David Anthony ; Young, James J.
    Tempest is a reusable crew exploration vehicle (CEV) for transferring crew from the Earth to the lunar surface and back. Tempest serves as a crew transfer module that supports a 4-person crew for a mission duration of 18 days, which consists of 8 days total transit duration and 10-day surface duration. Primary electrical power generation and on-orbit maneuvering for Tempest is provided by an attached Power and Propulsion Module (PPM). Hydrogen (H2)/oxygen (O2) fuel cells and a high energy-density matter (HEDM)/liquid oxygen (LOX) propellant reaction control system (RCS) provide power and reaction control respectively during Tempest’s separation from the PPM. Tempest is designed for a lifting entry and is equipped with parachutes for a soft landing. Tempest is part of an overall lunar transportation architecture. The 60,731 lbs combination of Tempest and the PPM are launched atop the notional Centurion C-1 heavylift launch vehicle (HLLV) and delivered to a 162 nmi, 28.5º circular orbit. After separating from the C-1 upper stage, the Tempest/PPM autonomously rendezvous with Manticore, an expendable trans-lunar injection (TLI) stage pre-positioned in the current orbit, and transfer to a lunar trajectory. After entering a 54 nmi polar circular lunar orbit, the Tempest/PPM separate from Manticore. Tempest separates from the PPM and is ferried to/from the lunar surface by Artemis, a reusable lunar lander. Upon return from the lunar surface, Tempest reconnects with the PPM, and the PPM provides the trans-earth injection (TEI) burn required to return to low earth orbit (LEO). Prior to atmospheric entry, Tempest separates from the PPM and subsequently executes a lifting entry trajectory. Crushable thermal foam attached to the lower surface of Tempest serves as an ablative thermal protection system (TPS) and the impact absorber of the parachute landing. Details of the conceptual design process used for Tempest are included in this paper. The disciplines used in the design include: configuration, aerodynamics, propulsion, trajectory, mass properties, environmental control life support system (ECLSS), entry aeroheating and TPS, terminal landing system (TLS), cost, operations, and reliability & safety. Each of these disciplines was computed using a conceptual design tool similar to that used in industry. These disciplines were then combined and optimized for the minimum gross weight of the Tempest CEV. The total development cost including the design, development, testing and evaluation (DDT&E) cost was determined to be $2.9 B FY’04. The theoretical first unit (TFU) cost for the Tempest CEV was $479 M FY’04. A summary of design disciplines as well as the economic results are included.
  • Item
    A Multi-Role Architecture Using Turbine Based Combined Cycle
    (Georgia Institute of Technology, 2004-07) Young, James J. ; Alemany, Kristina ; Cole, Bjorn ; Depasquale, Dominic ; Dvilyanski, Mikhail ; Fornuff, Jonathan ; Hester, Jesse ; Jones, Tom ; Kipp, Devin M. ; Reeves, John Daniel ; Schoenfeld, Michael ; Suh, Joo-Kyung
    In the fall of 2003 a multi-disciplinary team consisting of graduate students from the Space Systems Design Lab (SSDL), the Aerospace Systems Design Lab (ASDL), and the Elevated Temperature Structural Durability Lab (ETSDL) was assembled at Georgia Tech. This project marked the first joint venture between these labs and brought together a diverse wealth of tools, knowledge, and experience, as well as a group of individuals with keen interest in the future of access-to-space vehicles. The Knight RIDER revolutionary aerospace systems concept was formulated in response to a mock Request for Proposal (RFP) inviting architectural designs to enable six specific Design Reference Missions (DRMs) with a small set of common vehicles and components. Effects of this architecture-level approach were anticipated to be improved reliability and significantly increased economic viability due to cost sharing between multiple customers. The RFP specified horizontal take-off and landing capability, the use of Turbine Based Combined Cycle (TBCC) propulsion, and an operational timeframe of 2015-2030. The six DRMâ s can be summarized as follows: DRM1: Civil Cargo to Low Earth Orbit(LEO), Customer: NASA, Requirement: 20,000lb payload DRM2: International Space Station Crew Rotation, Customer: NASA, Requirement: 2 pilots, 4 crew DRM3: Long Range Strike Aircraft, Customer: USAF, Requirement: 8900 nmi range, 2-hour strike DRM4: Cargo to Geosynchronous Transfer Orbit(GTO), Customer: Commercial, Requirement: 10,000lb DRM5: High-Speed Global Transport, Customer: Commercial, Requirement: 6500 nmi range, 100 pax DRM6: Space Tourism Vehicle, Customer: Commercial, Requirement: 2 pilots, 6-16 passengers Each DRM had the basic performance requirements listed above as well as more detailed requirements such as target reliabilities, g-load limitations, flight rates, and conformance to various government regulations. Each DRM was also coupled with specific economic requirements outlining limitations on initial investment costs, recurring costs per flight, and required return on investment.