Organizational Unit:
Center for Health and Humanitarian Systems

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Resilient Hyperconnected Logistics Hub Network Design
    (Georgia Institute of Technology, 2021-06) Kulkarni, Onkar ; Cohen, Yaarit ; Dahan, Mathieu ; Montreuil, Benoit
    Logistics networks frequently face disruptions inducing an increase in delivery costs and delays. This paper studies the design of resilient hyperconnected logistics hub networks for the Physical Internet, modeled as an integer programming problem. The objective is to open logistics hubs in order to connect each origin and destination using multiple minimum length edge-disjoint paths. To estimate the resilience of the designed networks, we propose graph theoretic measures involving (i) the maximum number of edge-disjoint paths connecting each origin and destination, and (ii) the number of short paths traversing each edge. We develop a case study to design a class of parcel delivery networks in China and evaluate the impact of various disruption scenarios on the resulting distance traveled by parcels. Our results show the relevance of the proposed resilience measures and the increased capability of the designed networks to sustain disruptions in comparison to traditional logistics networks.
  • Item
    Design of a Simulation-Based Experiment for Assessing the Relevance of the Physical Internet Concept for Humanitarian Supply Chains
    (Georgia Institute of Technology, 2021-06) Grest, Manon ; Inan, Mahmut Metin ; Cohen, Yaarit M. ; Barenji, Ali ; Dahan, Mathieu ; Lauras, Matthieu ; Montreuil, Benoit
    The challenges faced in delivering relief items to victims of natural disasters and the growing external pressures urge humanitarian supply chain organizations to initiate some change. In this regard, the physical internet concept can offer a paradigm shift in relief organization and resource mobilization. To convince humanitarian actors to embrace this path, we propose a rigorous methodology leveraging a prototypical agent-oriented discrete-events simulator built within the AnyLogic platform, to conduct scientific experiments enabling to investigate the suitability and relevance of PI concepts for HSCs by systematically quantifying their benefits and drawbacks on HSC performance, sustainability, and resilience. We provide preliminary experimental results contrasting the baseline shaped by the current HSC structures, behaviors and practices, notably relative to sourcing, transporting, and warehousing, with those of hyperconnected HSCs in line with the Physical Internet at distinct degrees of maturity. In the experiment, we study past disaster scenarios that occurred in Indonesia and response efforts under different behaviors simulated with this platform. Initial results show that PI concepts are smoothly fitted to HSCs and the performance of hyperconnected HSCs is better than the current baseline.