Organizational Unit:
Center for the Study of Systems Biology

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    GOAP: A Generalized Orientation-Dependent, All-Atom Statistical Potential for Protein Structure Prediction
    (Georgia Institute of Technology, 2011-10) Zhou, Hongyi ; Skolnick, Jeffrey
    An accurate scoring function is a key component for successful protein structure prediction. To address this important unsolved problem, we develop a generalized orientation and distance-dependent all-atom statistical potential. The new statistical potential, generalized orientation-dependent all-atom potential (GOAP), depends on the relative orientation of the planes associated with each heavy atom in interacting pairs. GOAP is a generalization of previous orientation-dependent potentials that consider only representative atoms or blocks of side-chain or polar atoms. GOAP is decomposed into distance- and angle-dependent contributions. The DFIRE distance-scaled finite ideal gas reference state is employed for the distance-dependent component of GOAP. GOAP was tested on 11 commonly used decoy sets containing 278 targets, and recognized 226 native structures as best from the decoys, whereas DFIRE recognized 127 targets. The major improvement comes from decoy sets that have homology-modeled structures that are close to native (all within ∼4.0 Å) or from the ROSETTA ab initio decoy set. For these two kinds of decoys, orientation-independent DFIRE or only side-chain orientation-dependent RWplus performed poorly. Although the OPUS-PSP block-based orientation-dependent, side-chain atom contact potential performs much better (recognizing 196 targets) than DFIRE, RWplus, and dDFIRE, it is still ∼15% worse than GOAP. Thus, GOAP is a promising advance in knowledge-based, all-atom statistical potentials. GOAP is available for download at http://cssb.biology.gatech.edu/GOAP.
  • Item
    Brownian dynamics simulation of macromolecule diffusion in a protocell
    (Georgia Institute of Technology, 2011) Ando, Tadashi ; Skolnick, Jeffrey
    The interiors of all living cells are highly crowded with macro molecules, which differs considerably the thermodynamics and kinetics of biological reactions between in vivo and in vitro. For example, the diffusion of green fluorescent protein (GFP) in E. coli is ~10-fold slower than in dilute conditions. In this study, we performed Brownian dynamics (BD) simulations of rigid macromolecules in a crowded environment mimicking the cytosol of E. coli to study the motions of macromolecules. The simulation systems contained 35 70S ribosomes, 750 glycolytic enzymes, 75 GFPs, and 392 tRNAs in a 100 nm × 100 nm × 100 nm simulation box, where the macromolecules were represented by rigid-objects of one bead per amino acid or four beads per nucleotide models. Diffusion tensors of these molecules in dilute solutions were estimated by using a hydrodynamic theory to take into account the diffusion anisotropy of arbitrary shaped objects in the BD simulations. BD simulations of the system where each macromolecule is represented by its Stokes radius were also performed for comparison. Excluded volume effects greatly reduce the mobility of molecules in crowded environments for both molecular-shaped and equivalent sphere systems. Additionally, there were no significant differences in the reduction of diffusivity over the entire range of molecular size between two systems. However, the reduction in diffusion of GFP in these systems was still 4-5 times larger than for the in vivo experiment. We will discuss other plausible factors that might cause the large reduction in diffusion in vivo.