Organizational Unit:
School of Biological Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 19
Thumbnail Image
Item

The acute effects of physical activity on the stiffness of the plantar skin of people with and without diabetes

2013-11-18 , Wendland, Deborah Michael

Diabetes affects 25.8 million Americans. Complications related to this growing disease impact public health. One secondary complication of diabetes is changes in skin that can contribute to an increased risk for ulceration. Skin of people with diabetes has not been characterized over time nor has the skin’s acute response to exercise been assessed. The objective of this project was to establish the changes in skin properties over time, within different ambient environments, and after acute exercise. This objective sought to address the central hypothesis that skin will demonstrate decreased stiffness and increased elasticity as a result of acute physical activity. Skin stiffness, compliance, and thickness measurements of the plantar foot were compared across time and environment. Skin stiffness and compliance were also compared before and after treadmill walking. First, three devices were validated. Accuracy of the StepWatch was validated for people using assistive devices. The tissue interrogation device (TID), a novel device that measures tangential skin stiffness, and the myotonometer, which measures skin compliance, were validated using elastomer phantoms. Both were found suitable to measure plantar skin properties. Second, skin properties of 16 persons with and without diabetes were measured over time and environmental condition. Skin was variable across subjects over time, but was stable within subjects over a month, supporting the use of a repeated measures approach to interventional study on the plantar skin in people with diabetes. Previous findings for general skin characteristics were supported including the tendency for persons with diabetes to have a thinner epidermis and a thicker dermis than persons without diabetes. Tangential skin stiffness was determined to be less stiff in people with diabetes when measured in a medial-lateral direction. People with diabetes had lower tissue compliance than those without. Skin properties varied across environmental condition, supporting the consideration of testing environment when evaluating skin. Finally, changes in skin properties were evaluated in 32 persons with diabetes before and after treadmill (TM) walking. Using the TID, skin stiffness (tangential) at the great toe of people with diabetes (663.705±4.796 N/m) and without (647.753±5.328 N/m) were different (p=0.040). Stiffness immediately following TM walking did not differ from pre-walking stiffness, but subsequent trials had increased stiffness. Similar, but not significant responses were noted at the first metatarsal head. Compliance using normal loading increased after walking with statistical differences lasting 30-60 minutes.

Thumbnail Image
Item

The evolutionary significance of DNA methylation in human genome

2013-10-28 , Zeng, Jia

In eukaryotic genomes ranging from plants to mammals, DNA methylation is a major epigenetic modification of DNA by adding a methyl group exclusively to cytosine residuals. In mammalian genomes such as humans, these cytosine bases are usually followed by guanine. Although it does not change the primary DNA sequence, this covalent modification plays critical roles in several regulatory processes and can impact gene activity in a heritable fashion. What is more important, DNA methylation is essential for mammalian embryonic development and aberrant DNA methylation is implicated in several human diseases, in particular in neuro-developmental syndromes (such as the fragile X and Rett syndromes) and cancer. These biological significances disclose the importance of understanding genomic patterns and function role of DNA methylation in human, as a initial step to get to know the epigenotype and its manner in connecting the phenotype and genotype. Two key papers back in 1975 independently suggested that methylation of CpG dinucleotides in vertebrates could be established de novo and inherited through somatic cell divisions by protein machineries of DNA methyltransferases that recognizes hemi-methylated CpG palindromes. They also indicated that the methyl group could be recognized by DNA-binding proteins and that DNA methylation directly silences gene expression. After almost four decades, several key points in these foundation papers are proved to be true. Take the mammalian genome for example, there are several findings indicating the epigenetic repression of gene expression by DNA methylation. These include X-chromosome inactivation, gene imprinting and suppressing the proliferation of transposable elements and repeat elements of viral or retroviral origin. In addition to these, many novel roles of DNA methylation have also been revealed. For example, DNA methylation can regulate alternative splicing by preventing CTCF, an evolutionarily conserved zinc-finger protein, binding to DNA. By using the technique of fluorescence resonance energy transfer (FRET) and fluorescence polarization, DNA methylation has also been shown to increase nucleosome compaction through DNA-histone contacts. What is more important, DNA methylation is essential for mammalian embryonic development and aberrant change of DNA methylation has been related to disease such as cancer. However, it is also notable there are several lines of evidence contradicting the relationship between DNA methylation and gene silencing. For example, comparison of DNA methylation levels in human genome on the active and inactive X chromosomes showed reduced methylation specifically over gene bodies on inactive X chromosomes. Not only in human, DNA methylation is found to be usually targeted to the transcription units of actively transcribed genes in invertebrate species. These results prove that the function of DNA methylation is challenging to be unravel. Besides, due to the development of sequencing technique, whole genome DNA methylation profiles have been detected in diverse species. Comparing genomic patterns of DNA methylation shows considerable variation among taxa, especially between vertebrates and invertebrates. However, even though extensive studies reveal the patterns and functions of DNA methylation in different species, in the mean time, they also highlight the limits to our understanding of this complex epigenetic system. During my Ph.D., in order to perform in-depth studies of DNA methylation in diverse animals as a way to understand the complexity of DNA methylation and its functions, I dedicated my efforts in investigating and analyzing the DNA methylation profiles in diverse species, ranging from insects to primates, including both model and non-model organisms. This dissertation, which constitutes an important part of my research, mainly focuses on the DNA methylation profile in primates including human and chimpanzee. In general, I will use three chapters to elucidate my work in generating and interpreting the whole genome DNA methylation data. Firstly, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees, then comprehensive comparative studies for these DNA methylation maps have been performed, by integrating data on gene expression as well. This work demonstrates that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and also potentially contribute to the human-specific traits, such as evolution of disease vulnerabilities. Secondly , we performed global analyses of CpG islands (CGIs) methylation across multiple methylomes of distinctive cellular origins in human. The results from this work show that the human CpG islands can be distinctly classified into different clusters solely based upon the DNA methylation profiles, and these CpG islands clusters reflect their distinctive nature at many biological levels, including both genomic characteristics and evolutionary features. Moreover, these CpG islands clusters are non-randomly associated with several important biological phenomena and processes such as diseases, aging, and gene imprinting. These new findings shed lights in deciphering the regulatory mechanisms of CpG islands in human health and diseases. At last, by utilizing the DNA methylome from human sperm and genetic map generated from the International HapMap Consortium project, we investigated the hypothesis suggesting a potential role of germ line DNA methylation in affecting meiotic recombination, which is essential for successful meiosis and various evolutionary processes. Even thought the results imply that DNA methylation is a important factor affecting regional recombination rate, the strength of correlation between these two is not as strong as the previous report. Besides, high-throughput analyses indicate that other epigenetic modifications, tri-methylation of histone 3 lysine 4 and histone 3 lysine 27 are also global features at the recombination hotspots, and may interact with methylation to affect the recombination pattern simultaneously. This work suggests epigenetic mechanisms as additional factors affecting recombination, which cannot be fully explained by the DNA sequence itself. In summary, I hope the results from these work can expand our knowledge regarding the common and variable patterns of DNA methylation in different taxa, and shed light about the function role and its major change during animal evolution.

Thumbnail Image
Item

Computational analyses of gene expression profiles of ovarian and pancreatic cancer

2013-07-16 , Lili, Loukia

Cancer is a devastating disease for human society with thousands of deaths and estimated new cases every year around the globe. Intensive research efforts on understanding the disease progression and determining effective diagnostics and therapeutics have been employed for over one hundred years. Throughout this time, and in particular during the last two decades, computational-based methods have gained increasing importance in cancer biology research by providing significant advantages in the analysis and interpretation of high-throughput data at the molecular and genomic levels. More specifically, after completion of the Human Genome Project in 2003, and with the Cancer Human Genome Project underway, high-throughput biological assays (e.g., microarray chips, next generation sequencing machines) have supplied researchers thousands of measurements per experimental sample. The massive amount of related data has oftentimes been challenging to interpret and translate, particularly in cancer biology and therapeutics. This thesis reports the results of three independent studies in which high-throughput gene expression is computationally analyzed to address longstanding issues in cancer biology. Two of the studies utilize data from ovarian cancer patients while the third involves data collected from pancreatic cancer patients. In Chapter 1, I address the importance of personalized profiling in pancreatic cancer ; in Chapter 2 the role of cancer stroma in the progression of ovarian cancer and in Chapter 3 evidence for the role of epithelial-to-mesenchymal transition (EMT) in ovarian cancer metastasis. More specifically, Chapter 1 emphasizes the power of personalized molecular profiling in unmasking unique gene expression signatures that correspond to each individual patient. These individual expression patterns (individual profiling), which may be overlooked by the traditional methods of gene signatures enriched in groups of afflicted individuals (group profiling), can provide valuable information for more successful targeted therapies. In order to address this issue in pancreatic cancer, comparisons of the most significantly differentially expressed genes and functional pathways were performed between cancer and control patient samples as determined by group vs. personalized analyses. There was little to no overlap between genes/pathways identified by group analyses relative to those identified by personalized analyses. These results indicated that personalized and not group molecular profiling is the most appropriate approach for the identification of putative candidates for targeted gene therapy of pancreatic and perhaps other cancers with heterogeneous molecular etiology. Chapter 2, also with strong implications on personalized molecular profiling, unveils the functional variability of the tumor microenvironment among ovarian cancer patients. The purpose of this study was to investigate the process of microenvironmental stroma activation in human ovarian cancer by molecular analysis of matched sets of cancer and surrounding stroma tissues from individual patients. Expression patterns of genes encoding signaling molecules and compatible receptors in the cancer stroma and cancer epithelia samples indicated the existence of two sub-groups of cancer stroma with different propensities to support tumor growth. These results demonstrated that functionally significant variability exists among ovarian cancer patients in the ability of the microenvironment to modulate cancer development. Chapter 3 aims to uncover the molecular mechanisms that underlie the metastatic process with the hope that such knowledge may lead to more effective therapeutic treatments. For this purpose, pathological and molecular analyses were conducted in 14 matched sets of primary and metastatic samples from late staged ovarian cancer patients. Pathological examination revealed no morphological differences between any of the primary and metastatic samples. In contrast, gene expression analyses identified two distinct groups of patient samples. One group displayed essentially identical expression patterns to primary samples isolated from the same patients. The second group displayed expression patterns significantly different from primary samples isolated from the same patients. Predominant among the differentially expressed genes characterizing this second class of metastatic samples were genes previously associated with epithelial-to-mesenchymal transtion (EMT). These results supported a role of EMT in at least some ovarian cancer metastases and demonstrated that indistinguishable morphologies between primary and metastatic cancer samples is not sufficient evidence to negate the role of EMT in the metastatic process.

Thumbnail Image
Item

Protein-assisted targeting of genes in yeast and human cells

2013-06-28 , Ruff, Patrick

This work was designed as a proof-of-principle concept or prototype to show the effect of protein-assisted targeting of DNA to specific genomic loci. Two strategies were employed to deliver the DNA with the aim that once inside the cell the DNA would be delivered to the target sequence by the assistance of a protein. In our case, the chosen protein was the site-specific meganuclease I-SceI. The first strategy described herein was to bind the targeting DNA to I-SceI by the use of a fusion protein between I-SceI and a known DNA-binding domain, the GAL4-DBD. The second strategy involved using a DNA aptamer to I-SceI to link the targeting DNA and I-SceI. Testing in vivo revealed that in our human cells (HEK-293) single-stranded DNA was more efficient at gene targeting than double-stranded DNA. In order for the first strategy to work, we needed to have some region of double-stranded DNA. We found that in human cells, it was better for gene targeting to have that double-stranded DNA on the 5’ side of our targeting DNA. We also used gel shift assays to confirm binding by our candidate DNA-binding domain, the GAL4-DBD. We were unable to detect expression of the fusion protein of I-SceI and the GAL4-DBD. For the second strategy we were able to construct an aptamer to I-SceI using a variant of the systematic evolution of ligands by exponential enrichment (SELEX). The I-SceI aptamer was synthesized as part of a longer DNA molecule containing homology to a target locus. Using this chimeric oligonucleotide (part aptamer, part DNA repair region) testing was done in both yeast and human cells. Aside from instances where the aptamer’s secondary structure may have been compromised, the aptamer containing oligonucleotide stimulated repair at a rate 2 to 15-fold higher than the non-selected control sequence. These experimental results show that by delivering targeting DNA within close proximity to the site of modification, gene targeting frequencies can be increased.

Thumbnail Image
Item

Identifying key factors in two-dimensional crystal production and sample preparation for structure-function studies of membrane proteins by cryo-EM

2013-11-18 , Johnson, Matthew C.

Electron crystallography of two-dimensional crystals is a structure-determination method well suited to the study of membrane protein structure-function. Two-dimensional crystals consist of ordered arrays of protein within reconstituted lipid bilayers, an arrangement that mimics the natural membrane environment. In this work we describe our recent progress in the use of this method with three different proteins, each providing a window into a separate paradigm in the electron crystallographic pipeline. Specific crystallization conditions for human leukotriene C₄ synthase (LTC₄S) have previously been determined, but our continued refinement of purification and crystallization has identified a number of additional parameters that greatly affect crystal size and quality, and we have developed a protocol to rapidly and reproducibly grow large, non-mosaic crystals of LTC₄S. The human gamma-glutamyl carboxylase (GGCX) has also been crystallized, but is sensitive to cryo-EM sample preparation conditions and we present here the successful reproduction of crystallization and refinement of cryo-EM sample preparation conditions. Lastly, we describe our crystallization screens with the Vibrio cholerae sodium-pumping NADH:ubiquinone reductase complex (Na⁺-NQR), and identify the factors critical to membrane reconstitution of the complex, a necessary first step towards crystallization. We also describe a semi-quantitative crystal screening protocol we have developed that provides quick and accurate method to assess two- dimensional crystallization trials, and discuss some general observations in optimization of membrane protein purification and two-dimensional crystallization for electron crystallography.

Thumbnail Image
Item

Task dependent effects of baroreceptor unloading on motor cortical and corticospinal pathways

2013-08-27 , Buharin, Vasiliy E.

Corticospinal and intracortical excitability are excitability measures of the central nervous system responsible for motor generation, and are studied for their contribution to fine motor skill execution and learning. Since the need for proper execution of fine motor skills is ever-present and necessary for everyday life, identification of physiological pathways that may disrupt or enhance corticospinal and intracortical excitability is an important research topic. This thesis investigates the effects of baroreceptor unloading on corticospinal and intracortical excitability during various motor tasks. Baroreceptor unloading is a physiological response to common hemodynamic stress (e.g. hypovolemia and orthostasis). The motor tasks investigated are complete muscular relaxation, individual isometric low-force contraction of a muscle, and an isometric co-contraction of a muscle in a joint-stabilizing task. The effects of baroreceptor unloading on corticospinal and intracortical excitability appear to be very task specific. The results are discussed in view of available pharmacological and physiological research, and potential neural pathways for the observed effects are suggested. The overall conclusion is that baroreceptor unloading increases corticospinal excitability and decreases intracortical inhibition in a resting muscle, does not produce any observable effects during individual muscle activity, and decreases corticospinal excitability during joint-stabilizing co-contraction.

Thumbnail Image
Item

Effects of repetitive DNA and epigenetics on human genome regulation

2013-07-02 , Jjingo, Daudi

The highly developed and specialized anatomical and physiological characteristics observed for eukaryotes in general and mammals in particular are underwritten by an elaborate and intricate process of genome regulation. This precise control of the location, timing and amplitude of gene expression is achieved by a variety of genetic and epigenetic tools and mechanisms. While several of these regulatory mechanisms have been extensively studied, our understanding of the complex and diverse associations between various epigenetic marks and genetic elements with genome regulatory systems has remained incomplete. However, the recent profound improvements in sequencing technologies have significantly improved the depth and breadth to which their functions and relationships can be understood. The objective of this thesis has been to apply bioinformatics, computational and statistical tools to analyze and interpret various recent high throughput datasets from a combination of Next generation sequencing and Chromatin immune precipitation (ChIP-seq) experiments. These datasets have been analyzed to further our understanding of the dynamics of gene regulation in humans, particularly as it relates to repetitive DNA, cis-regulation and DNA methylation. The thesis thus resides at the intersection of three major areas; transposable elements, cis-regulatory elements and epigenetics. It explores how those three aspects of regulation relate with gene expression and the functional implications of those interactions. From this analysis, the thesis provides new insights into; 1) the relationship between the transposable element environment of human genes and their expression, 2) the role of mammalian-wide interspersed repeats (MIRs) in the function of human enhancers and enhancement of tissue-specic functions, 3) the existence and function of composite cis-regulatory elements and 4) the dynamics and relationship between human gene-body DNA methylation and gene expression.

Thumbnail Image
Item

Interactions between ecosystems and disease in the plankton of freshwater lakes

2013-11-18 , Penczykowski, Rachel M.

I investigated effects of environmental change on disease, and effects of disease on ecosystems, using a freshwater zooplankton host and its fungal parasite. This research involved lake surveys, manipulative experiments, and mathematical models. My results indicate that ecosystem characteristics such as habitat structure, nutrient availability, and quality of a host’s resources (here, phytoplankton) can affect the spread of disease. For example, a survey of epidemics in lakes revealed direct and indirect links between habitat structure and epidemic size, where indirect connections were mediated by non-host species. Then, in a mesocosm experiment in a lake, manipulations of habitat structure and nutrient availability interactively affected the spread of disease, and nutrient enrichment increased densities of infected hosts. In a separate laboratory experiment, poor quality resources were shown to decrease parasite transmission rate by altering host foraging behavior. My experimental results also suggest that disease can affect ecosystems through effects on host densities and host traits. In the mesocosm experiment, the parasite indirectly increased abundance of algal resources by decreasing densities of the zooplankton host. Disease in the experimental zooplankton populations also impacted nutrient stoichiometry of algae, which could entail a parasite-mediated shift in food quality for grazers such as the host. Additionally, I showed that infection dramatically reduces host feeding rate, and used a dynamic epidemiological model to illustrate how this parasite-mediated trait change could affect densities of resources and hosts, as well as the spread of disease. I discuss the implications of these ecosystem–disease interactions in light of ongoing changes to habitat and nutrient regimes in freshwater ecosystems.

Thumbnail Image
Item

Comparative genomic and epigenomic analyses of human and non-human primate evolution

2013-08-23 , Xu, Ke

Primates are one of the best characterized phylogenies with vast amounts of comparative data available, including genomic sequences, gene expression, and epigenetic modifications. Thus, they provide an ideal system to study sequence evolution, regulatory evolution, epigenetic evolution as well as their interplays. Comparative studies of primate genomes can also shed light on molecular basis of human-specific traits. This dissertation is mainly composed of three chapters studying human and non-human primate evolution. The first study investigated evolutionary rate difference between sex chromosome and autosomes across diverse primate species. The second study developed an unbiased approach without the need of prior information to identify genomic segments under accelerated evolution. The third study investigated interplay between genomic and epigenomic evolution of humans and chimpanzees. Research advance 1: evolutionary rates of the X chromosome are predicted to be different from those of autosomes. A theory based on neutral mutation predicts that the X chromosome evolves slower than autosomes (slow-X evolution) because the numbers of cell division differ between spermatogenesis and oogenesis. A theory based on natural selection predicts an opposite direction (fast-X evolution) because newly arising beneficial mutations on the autosomes are usually recessive or partially recessive and not exposed to natural selection. A strong slow-X evolution is also predicted to counteract the effect of fast-X evolution. In our research, we simultaneously studied slow-X evolution, fast-X evolution as well as their interaction in a phylogeny of diverse primates. We showed that slow-X evolution exists in all the examined species, although their degrees differ, possibly due to their different life history traits such as generation times. We showed that fast-X evolution is lineage-specific and provided evidences that fast-X evolution is more evident in species with relatively weak slow-X evolution. We discussed potential contribution of various degrees of slow-X evolution on the conflicting population genetic inferences about human demography. Research advance 2: human-specific traits have long been considered to reside in the genome. There has been a surge of interest to identify genomic regions with accelerated evolution rate in the human genome. However, these studies either rely on a priori knowledge or sliding windows of arbitrary sizes. My research provided an unbiased approach based on previously developed “maximal segment” algorithm to identify genomic segments with accelerated lineage-specific substitution rate. Under this framework, we identified a large number of human genomic segments with clustered human-specific substitutions (named “maximal segments” after the algorithm). Our identified human maximal segments cover a significant amount of previously identified human accelerated regions and overlap with genes enriched in developmental processes. We demonstrated that the underlying evolutionary forces driving the maximal segments included regionally increased mutation rate, biased gene conversion and positive selection. Research advance 3: DNA methylation is one of the most common epigenetic modifications and plays a significant role in gene regulation. How DNA methylation status varies on the evolutionary timescale is not well understood. In this study, we investigated the role of genetic changes in shaping DNA methylation divergence between humans and chimpanzees in their sperm and brain, separately. We find that for orthologous promoter regions, CpG dinucleotide content difference is negatively correlated with DNA methylation level difference in the sperm but not in the brain, which may be explained by the fact that CpG depleting mutations better reflect germline DNA methylation levels. For the aligned sites of orthologous promoter regions, sequence divergence is positively correlated with methylation divergence for both tissues. We showed that the evolution of DNA methylation can be affected by various genetic factors including transposable element insertions, CpG depleting mutations and CpG generating mutations.

Thumbnail Image
Item

Mechanisms of chromosomal instability induced by unstable DNA repeats in yeast S.cerevisiae

2013-06-28 , Zhang, Yu

DNA repetitive sequences capable of adopting non-B DNA structures are a potent source of instability in eukaryotic genomes. They are strong inducers of chromosomal fragility and genome rearrangements that cause various hereditary diseases and cancers. In addition, a subset of repeats also has an ability to expand, which leads to more than 20 human genetic diseases that are collectively known as repeat expansion diseases. However, the mechanisms underlying the potential of these structure-prone motifs to break and expand are largely unknown. In this study, a systematic genome-wide screen was employed in yeast Saccharomyces cerevisiae to investigate the contributing factors of the instability of two representative non-B DNA-forming repeats: the triplex-adopting GAA/TTC tracts and the inverted repeats that can form hairpin and cruciform structures. The GAA/TTC screen revealed that DNA replication and transcription initiation are the two major pathways governing the GAA/TTC stability in yeast, as corresponding mutants strongly induce both fragility and large-scale expansions of the repeats. The inverted repeats screen and follow-up experiments revealed that both replication-dependent and -independent pathways are involved in maintaining the stability of palindromic sequences. We propose that similar mechanisms could operate in the human cells to mediate the deleterious metabolism of GAA and inverted repeats.