Organizational Unit:
School of Biological Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 9 of 9
Thumbnail Image
Item

Evolutionary synthetic biology: structure/function relationships within the protein translation system

2011-09-06 , Cacan, Ercan

Production of mutant biological molecules for understanding biological principles or as therapeutic agents has gained considerable interest recently. Synthetic genes are today being widely used for production of such molecules due to the substantial decrease in the costs associated with gene synthesis technology. Along one such line, we have engineered tRNA genes in order to dissect the effects of G:U base-pairs on the accuracy of the protein translation machinery. Our results provide greater detail into the thermodynamic interactions between tRNA molecules and an Elongation Factor protein (termed EF-Tu in bacteria and eEF1A in eukaryotes) and how these interactions influence the delivery of aminoacylated tRNAs to the ribosome. We anticipate that our studies not only shed light on the basic mechanisms of molecular machines but may also help us to develop therapeutic or novel proteins that contain unnatural amino acids. Further, the manipulation of the translation machinery holds promise for the development of new methods to understand the origins of life. Along another line, we have used the power of synthetic biology to experimentally validate an evolutionary model. We exploited the functional diversity contained within the EF-Tu/eEF1A gene family to experimentally validate the model of evolution termed ‘heterotachy’. Heterotachy refers to a switch in a site’s mutational rate class. For instance, a site in a protein sequence may be invariant across all bacterial homologs while that same site may be highly variable across eukaryotic homologs. Such patterns imply that the selective constraints acting on this site differs between bacteria and eukaryotes. Despite intense efforts and large interest in understanding these patterns, no studies have experimentally validated these concepts until now. In the present study, we analyzed EF-Tu/eEF1A gene family members between bacteria and eukaryotes to identify heterotachous patterns (also called Type-I functional divergence). We applied statistical tests to identify sites possibly responsible for biomolecular functional divergence between EF-Tu and eEF1A. We then synthesized protein variants in the laboratory to validate our computational predictions. The results demonstrate for the first time that the identification of heterotachous sites can be specifically implicated in functional divergence among homologous proteins. In total, this work supports an evolutionary synthetic biology paradigm that in one direction uses synthetic molecules to better understand the mechanisms and constraints governing biomolecular behavior while in another direction uses principles of molecular sequence evolution to generate novel biomolecules that have utility for industry and/or biomedicine.

Thumbnail Image
Item

Freshwater red algae use activated chemical defenses against herbivores

2011-07-12 , Goodman, Keri M.

Chemically mediated interactions have important ecological and evolutionary effects on populations and communities. Despite recognition that herbivory can significantly affect the biomass and composition of freshwater macrophyte communities, there are few investigations of chemical defenses among freshwater vascular plants and mosses and none of freshwater red algae. This study compares the palatability of five species of freshwater red algae (Batrachospermum helminthosum, Boldia erythrosiphon, Kumanoa sp., Paralemanea annulata, and Tuomeya americana) that occur in the southeastern United States relative to two co-occurring macrophytes (the chemically defended aquatic moss Fontinalis novae-angliae and the broadly palatable green alga Cladophora glomerata). We assessed the potential role of structural, nutritional, and chemical traits in reducing macrophyte susceptibility to generalist crayfish grazers. Both native and non-native crayfish significantly preferred the green alga C. glomerata over four of the five species of red algae. B. erythrosiphon was palatable, while the cartilaginous structure of P. annulata reduced its susceptibility to grazing, and chemical defenses of B. helminthosum, Kumanoa sp., and T. americana rendered these species as unpalatable as the moss F. novae-angliae. Extracts from these latter species reduced feeding by ~30-60% relative to solvent controls if tissues were crushed (simulating herbivore damage) prior to extraction in organic solvents. However, if algae were first soaked in organic solvents that inhibit enzymatic activity and then crushed, crude extracts stimulated or had no effect on herbivory. B. helminthosum, Kumanoa sp., and T. americana all exhibited "activated" chemical defenses in which anti-herbivore compounds are produced rapidly upon herbivore attack via enzymatic processes. In an additional accept/reject behavioral assay, B. helminthosum extracts reduced the number of crayfish willing to feed by >90%. Given that three of the five red algal taxa examined in this study yielded deterrent crude extracts, selection for defensive chemistry in freshwater rhodophytes appears to be substantial. Activated chemical defenses are thought to be an adaptation to reduce the resource allocation and ecological costs of defense. As such, activated chemical defenses may be favored in freshwater red algae, whose short-lived gametophytes must grow and reproduce rapidly. Roughly 20% of the known chemical defenses produced by marine algae are activated; further examination is needed to determine whether the frequency of activated chemistry is higher in freshwater red algae compared to their marine counterparts. Continued investigation of chemical defenses in freshwater red algae will contribute to among-system comparisons, providing new insights in the generality of plant-herbivore interactions and their evolution.

Thumbnail Image
Item

The relationship between Sarracenia oreophila and an endophytic Burkholderia

2011-05-17 , Kuntz, Veronica L.

Plant growth-promoting bacteria (PGPB) have been studied in many agriculturally interesting plants, but never in pitcher plants. Sarracenia oreophila (the green pitcher plant) is an endangered species in Georgia, Alabama, and North Carolina (Rice 2010). With the help of Dr. Jim Spain's lab, a previous student in Dr. Gerald Pullman's lab discovered evidence that nitrogen-fixing bacteria (Burkholderia spp.) live within these pitcher plants. This study aims to determine whether these nitrogen-fixing bacteria confer a benefit to their host plants by providing fixed nitrogen. To do this, pitcher plants were inoculated with the Burkholderia and grown on a control medium, a medium without sugar (as the sugar causes the bacteria to grow until they hinder the plants), various media that are missing nitrogen-containing compounds usually provided in growth media, and a medium completely lacking nitrogen. These plants were compared to control plants on the same media that had not been inoculated with Burkholderia. The plants' biomass and root growth were measured. The data suggest that Burkholderia may stimulate plant biomass growth when sufficient nitrogen is present and there may be a nitrogen-threshold that needs to be met in order to sustain the Burkholderia-Sarracenia symbiosis. Also, the Burkholderia has a negative effect on roots grown in high-nitrogen media, possibly due to competition for nutrients.

Thumbnail Image
Item

A test of optimal defense theory vs. the growth-differentiation balance hypothesis as predictors of seaweed palatability and defenses

2011-08-31 , Heckman, Melanie L.

Because organisms have limited resources to allocate to multiple life history traits, the Optimal Defense Theory (ODT) and the Growth-Differentiation Balance Hypothesis (GDBH) were developed by terrestrial plant ecologists to predict intraindividual defense allocation based on the cost of defense and these life history trade-offs. However, these theories have garnered equivocal experimental support over the years and are rarely experimentally extended from predictions of plant physiology to the palatability of the tissues an herbivore experiences. We therefore examined tissue palatability, nutritional value, and defense mechanisms in multiple Dictyotalean seaweeds in two Caribbean locations, using two herbivores. Relative palatability of tissues varied greatly with algal species, grazer species, and location. Because older bases were not consistently defended, GDBH did not predict relative palatability. We could not reject ODT without intensive measures of tissue fitness value and herbivore risk, and this theory was therefore not useful in making broad predictions of tissue palatability. In testing the physiological predictions of these theories, we found the young, growing apices of these seaweeds to be generally more nutritionally valuable than the old, anchoring bases and found organic-rich apices to be more chemically deterrent, thus supporting ODT. However, the combined chemical, nutritional, and structural traits of these algae all influenced herbivore choice. As a result, these patterns of apical value and chemical defense reflected palatability of live tissues for only one of five algal species, which rendered ODT and GDBH poor predictors of relative palatability for most algae.

Thumbnail Image
Item

RNA secondary sturcture prediction using a combined method of thermodynamics and kinetics

2011-07-07 , Pan, Minmin

Nowadays, RNA is extensively acknowledged an important role in the functions of information transfer, structural components, gene regulation and etc. The secondary structure of RNA becomes a key to understand structure-function relationship. Computational prediction of RNA secondary structure does not only provide possible structures, but also elucidates the mechanism of RNA folding. Conventional prediction programs are either derived from evolutionary perspective, or aimed to achieve minimum free energy. In vivo, RNA folds during transcription, which indicates that native RNA structure is a result from both thermodynamics and kinetics. In this thesis, I first reviewed the current leading kinetic folding programs and demonstrate that these programs are not able to predict secondary structure accurately. Upon that, I proposed a new sequential folding program called GTkinetics. Given an RNA sequence, GTkinetics predicts a secondary structure and a series of RNA folding trajectories. It treats the RNA as a growing chain, and adds stable local structures sequentially. It is featured with a Z-score to evaluate stability of local structures, which is able to locate native local structures with high confidence. Since all stable local structures are captured in GTkinetics, it results in some false positives, which prevents the native structure to form as the chain grows. This suggests a refolding model to melt the false positive hairpins, probable intermediate structures, and to fold the RNA into a new structure with reliable long-range helices. By analyzing suboptimal ensemble along the folding pathway, I suggested a refolding mechanism, with which refolding can be evaluated whether or not to take place. Another way to favor local structures over long-distance structures, we introduced a distance penalty function into the free energy calculation. I used a sigmoidal function to compute the energy penalty according to the distance in the primary sequence between two nucleotides of a base pair. For both the training dataset and the test dataset, the distance function improves the prediction to some extent. In order to characterize the differences between local and long-range helices, I carried out analysis of standardized local nucleotide composition and base pair composition according to the two groups. The results show that adenine accumulates on the 5' side of local structure, but not on that of long-range helices. GU base pairs occur significantly more frequent in the local helices than that in the long-range helices. These indicate that the mechanisms to form local and long range helices are different, which is encoded in the sequence itself. Based on all the results, I will draw conclusions and suggest future directions to enhance the current sequential folding program.

Thumbnail Image
Item

The effect of age and sex on the number and osteogenic differentiation potential of adipose-derived mesenchymal stem cells

2010-06-23 , Lazin, Jamie Jonas

It has been shown that stem cells exist within adult adipose tissue. These stem cells are named adipose-derived mesenchymal stem cells (ASCs), are derived from the mesoderm, and can differentiate into a number of cells including osteoblasts, chondrocytes, and adipocytes. However, before these cells can be used clinically it is important that we understand how factors like age, sex, and ethnicity affect ASC number and potential. Additionally, since men and women vary in their distribution of adipose tissue, it will be important to see if the ideal source of ASCs is different for each sex. The goal of this study was to assess how age and sex affects ASCs. We used flow cytometry to investigate how age and sex affected the number of ASCs in adipose tissue. Additionally, we plated these cells in culture and treated them with an osteogenic media (OM) with the intention of pushing them towards osteoblast differentiation. The purpose of this was to see if age or sex affected the potential of the ASCs to undergo osteogenesis in culture. For this study we used real-time PCR and biochemical assays to look at markers of early and late osteogenic differentiation. Finally, we used immunohistochemistry to demonstrate where in adipose tissue the CD73 and CD271 positive cell population exists. It is our hope that this work will shed light on how age and sex affect ASCs so that clinicians can optimize their ASC harvest depending on the patient's physiology.

Thumbnail Image
Item

Genetic and physical interaction of Sgt2 protein with prion-chaperone machinery

2011-08-10 , Pan, Tao

The word "Prion" refers to self-perpetuating protein aggregates that cause neurodegenerative diseases in mammals. It is a protein isoform that has undergone a conformational change which converts the normal form of the protein into the infectious form with the same amino acid sequence. Yeast [PSI+] prion is the prion isoform of Sup35 protein, a translation termination factor eRF3. It has been suggested that prion [PSI+] is controlled by the ensemble of chaperones with Hsp104 playing the major role. The previous work performed in the Chernoffs lab showed that the defective GET pathway caused by get led to the defect in [PSI+] curing by excess Hsp104. The GET pathway is a system responsible for transporting newly synthesized TA-protein to the ER membrane, and the components which have been proven to be involved in this pathway include: Get1, Get2, Get3, Get4, Get5 and Sgt2. In this study we describe the mechanism underlying the effect of the defective GET pathway on [PSI+]. We demonstrate that Sgt2, one of the components of GET pathway, interacts with Sup35 in both [PSI+] and [psi-] strains through its prion domain. Overproduction of Sgt2 and Hsp70-Ssa is triggered by the defective GET pathway and leads to the protection of [PSI+] aggregates from curing by excess Hsp104. We show that the direct interaction between Sgt2 and Hsp70-Ssa is not required for this protective effect.

Thumbnail Image
Item

Functional analysis of subtelomeric breakage motifs using yeast as a model organism

2011-05-24 , Khuzwayo, Sabelo Lethukuthula

Genome wide studies have uncovered the existence of large-scale copy number variation (CNV) in the human genome. The human genome of different individuals was initially estimated to be 99.9% similar, but population studies on CNV have revealed that it is 12-16% copy number variable. Abnormal genomic CNVs are frequently found in subtelomeres of patients with mental retardation (MR) and other neurological disorders. Rearrangements of chromosome subtelomeric regions represent a high proportion of cytogenetic abnormalities and account for approximately 30% of pathogenic CNVs. Although DNA double strand breaks (DSBs) are implicated as a major factor in chromosomal rearrangements, the causes of chromosome breakage in subtelomeric regions have not been elucidated. But due to the presence of repetitive sequences in subtelomeres, we hypothesized that chromosomal rearrangements in these regions are not stochastic but driven by specific sequence motifs. In a collaborative effort with Dr. Rudd (Department of human genetics at Emory University), we characterized subtelomeric breakpoints on different chromosome ends in search of common motifs that cause double-strand breaks. Using a yeast-based gross chromosomal rearrangement (GCR) system, we have identified a subtelomeric breakage motif from chromosome 2 (2q SBM) with a GCR rate that is 340 fold higher than background levels. To determine if the fragility of 2q SBM was driven by the formation of secondary structures, the helicase activities of Sgs1 and Pif1 were disrupted. These helicases have been shown to destabilize DNA secondary structures such as G-quadruplex structures. Disruption of these helicases augmented chromosomal rearrangements induced by 2q SBM, indicating that these helicases are required for maintenance of this sequence. We also donwregulated replication fork components to determine if 2q SBM was imposing any problems to the replication fork machinery. Downregulation of replication fork components increased chromosomal rearrangements, indicating that intact replication fork was a critical determinant of 2q SBM fragility. Using a yeast-based functional assay, these experiments have linked human subtelomeric repetitive sequences to chromosomal breakage that could give rise to human CNV in subtelomeric regions.

Thumbnail Image
Item

Ecological efficacy of chemically-mediated antipredator defenses in the Eastern newt Notophthalmus viridescens

2010-05-21 , Marion, Zachary Harrison

Frogs, toads, and salamanders are well known for harboring an array of distasteful (and poisonous) secondary metabolites, presumably as antipredator defenses; yet few experiments have rigorously demonstrated the efficacy of amphibian chemical defenses against ecologically relevant consumers. For example, despite an absence of rigorous statistical evidence showing their distastefulness to predators, eastern newts (Notophthalmus viridescens (Rafinesque))--a common salamander in lentic North American habitats--are assumed to tolerate diverse predator assemblages because newts secrete tetrodotoxin (TTX), a neurotoxin. Here we combine laboratory and field-based ecology with bioassay-guided separation of chemical extracts to show that eastern newts--although chemically protected against ecologically important consumers in lentic systems--nonetheless suffer substantial predation when tethered in the field. When offered newts with alternative prey (paedomorphic Ambystoma talpoideum), red swamp crayfish (Procambarus clarkii) and largemouth bass (Micropterus salmoides) were 9-10x as likely to feed on A. talpoideum as newts. Additionally, juvenile bluegill (Lepomis machrochirus) were 70% less likely to consume newt eggs compared to control food pellets. We also show that different newt tissues were differentially palatable to predatory fish. All bluegill tested consumed a palatable control food, but only 20% consumed dorsal skin, only 35% ate ventral skin, but 75% fed on newt viscera, suggesting that deterrent metabolites are concentrated in the skin. Bioassay-guided fractionation revealed that crude and water-soluble newt chemical extracts inhibited bluegill feeding, definitively establishing the chemical nature of newt antipredator defenses, although we were unsuccessful at isolating the chemical compounds responsible for unpalatability. Yet, deterrent activity in the polar but not the lipophilic chemical fraction and bioassay results demonstrating that naıve predators rapidly learn to avoid natural concentrations of TTX support the possible role of TTX in suppressing predation on newts. However, when tethered in the field, newt mortality was 55% higher in ponds with predatory fishes than in ponds lacking fishes (62% vs. 40% respectively), indicating the possible existence of other predators that are resistant to (or tolerant of) newt chemical defenses. Together, these results stress the importance of rigorous, ecologically relevant, and hypothesis-driven experimentation to better understand the complexity of chemically- mediated predator-prey interactions, even for well-studied species like N. viridescens.