Organizational Unit:
School of Biological Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Dynamics and Thermodynamics of β-Hairpin Assembly: Insights from Various Simulation Techniques
    (Georgia Institute of Technology, 1999-12) Kolinski, Andrzej ; Ilkowski, Bartosz ; Skolnick, Jeffrey
    Small peptides that might have some features of globular proteins can provide important insights into the protein folding problem. Two simulation methods, Monte Carlo Dynamics (MCD), based on the Metropolis sampling scheme, and Entropy Sampling Monte Carlo (ESMC), were applied in a study of a high-resolution lattice model of the C-terminal fragment of the B1 domain of protein G. The results provide a detailed description of folding dynamics and thermodynamics and agree with recent experimental findings (Munoz et al., 1997. Nature. 390:196–197). In particular, it was found that the folding is cooperative and has features of an all-or-none transition. Hairpin assembly is usually initiated by turn formation; however, hydrophobic collapse, followed by the system rearrangement, was also observed. The denatured state exhibits a substantial amount of fluctuating helical conformations, despite the strong b-type secondary structure propensities encoded in the sequence.
  • Item
    De novo simulations of the folding thermodynamics of the GCN4 leucine zipper
    (Georgia Institute of Technology, 1999-07) Mohanty, Debasisa ; Kolinski, Andrzej ; Skolnick, Jeffrey
    Entropy Sampling Monte Carlo (ESMC) simulations were carried out to study the thermodynamics of the folding transition in the GCN4 leucine zipper (GCN4-lz) in the context of a reduced model. Using the calculated partition functions for the monomer and dimer, and taking into account the equilibrium between the monomer and dimer, the average helix content of the GCN4-lz was computed over a range of temperatures and chain concentrations. The predicted helix contents for the native and denatured states of GCN4-lz agree with the experimental values. Similar to experimental results, our helix content versus temperature curves show a small linear decline in helix content with an increase in temperature in the native region. This is followed by a sharp transition to the denatured state. van’t Hoff analysis of the helix content versus temperature curves indicates that the folding transition can be described using a two-state model. This indicates that knowledge-based potentials can be used to describe the properties of the folded and unfolded states of proteins.