Organizational Unit:
School of Biological Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 1 of 1
Thumbnail Image
Item

Monte Carlo dynamics of diamond-lattice multichain systems

1986-01-30 , Kolinski, Andrzej , Skolnick, Jeffrey , Yaris, Robert

We present preliminary results of Monte Carlo studies on the dynamics of multichain diamond-lattice systems at considerably greater densities than those done previously. Chain dynamics were simulated by a random sequence of three or four bond kink motions. The single bead autocorrelation function exhibits "slow" mode relaxation behavior with a g(t)∝ tβ. There is a smooth crossover from Rouse-like dynamics, β=1/2, at low density to smaller values of β at higher density and β=0 at the glass transition density (φG≅0.92). The simulation provides a self-diffusion coefficient D ∝ n-2, with n the number of beads, in agreement with experiment. A phenomenological model, different from the widely accepted reptation picture, is proposed.