Organizational Unit:
School of Biological Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Mechanisms and implications of sodium loss in sweat during exercise in the heat for patients with cystic fibrosis and healthy individuals
    (Georgia Institute of Technology, 2009-11-17) Brown, Mary Beth
    Our aim was to understand mechanisms responsible for excessive electrolyte loss in the sweat gland and the potential impact on fluid balance during exercise in heat stress conditions. Human physiological testing under exercise/heat stress and immunofluorescence staining of sweat glands from skin biopsies were compared between healthy individuals (with normal and high sweat sodium chloride concentration, [NaCl]) and with cystic fibrosis patients (CF), who exhibit excessively salty sweat due to a defect of Cl- channel cystic fibrosis transmembrane conductance regulator (CFTR). Three novel findings are presented. First, excessively salty sweat may be associated with reduced expression of CFTR in the sweat gland reabsorptive duct of healthy individuals in addition to in those with CF; however, although a link to a CF gene mutation in healthy individuals with high sweat [NaCl] was not demonstrated, the possibility of an undetected CFTR mutation or polymorphism remains to be investigated as an underlying mechanism. Two, CF and healthy individuals with excessively salty sweat respond to moderate dehydration (3% body weight loss during exercise) with an attenuated rise in serum osmolality, greater relative loss in plasma volume, but similar perceived thirst compared to healthy individuals with "normal" sweat [NaCl]. However, individuals with CF respond to rehydration with hypotonic beverage by drinking less ad libitum in response to reduced serum [NaCl], suggesting that thirst-guided fluid replacement may be more appropriate for this population rather than restoring 100% of sweat loss following dehydration as is often recommended in healthy individuals.
  • Item
    Transactivation of Beta 2 Adrenergic Receptor by Bradykinin type 2 Receptor via heterodimerization
    (Georgia Institute of Technology, 2009-11-10) Vincent, Karla Kristine
    Although a long standing convention maintained that G Protein Coupled Receptors (GPCRs) exist in the plasma membrane solely as monomers, substantial work over the last two decades has demonstrated that these ubiquitous receptors can and in many cases, preferentially, exist as homodimers, heterodimers, or higher order oligomers. Often, two GPCRs of the same class heterodimerize; it is less common for two GPCRs of different signaling pathways to interact. The work presented here studied the physical and functional interaction of two GPCRs from discrete classes, the Beta 2 Adrenergic Receptor (β2AR), a Gαs-coupled receptor, and Bradykinin type 2 Receptor (Bk2R), a Gαq coupled receptor. These data show that Bk2R and β2AR are physically coupled when heterologously expressed in Xenopus oocytes, and in pheochromocytoma (PC12) cells and in freshly isolated murine ventricular myocytes, two systems that endogenously express these receptors. This physical coupling led to functional consequences in heterologous and endogenous expression systems, as Bk2R was able to transactivate β2AR signaling via its direct interaction with the receptor. Furthermore, coexpression of Bk2R shifted the dose response curve of β2AR for its selective agonist rightward in Xenopus oocyte electrophysiology experiments, suggesting the presence of Bk2R negatively affected β2AR native pharmacology. Up to thirty minutes of either bradykinin (BK) or isoproterenol exposure did not change the relative amount of Bk2R/β2AR heterodimer in PC12 cells, a rat adrenal medulla tumor cell line that endogenously expresses these receptors. Despite the obvious signaling consequences, the Bk2R/β2AR heterodimer accounted for only 10% of the total β2AR protein detected and 20% of the total Bk2R protein detected. When other Bk2R-specific ligands were also tested to examine the extent of β2AR transactivation, our data showed that both Lys-des-Arg-Bradykinin, a Bk2R partial agonist and NPC 567, a Bk2R antagonist, transactivated β2AR to the same extent as BK. Taken together, our data provide a novel mode of receptor regulation and signaling via Bk2R/β2AR heterodimerization. Because a large percentage of therapeutics target GPCRs, a greater understanding of how a GPCR heterodimer functions could be beneficial for targeting new drugs and refining existing drugs. Understanding the Bk2R/β2AR heterodimer provides a new perspective on the myriad of fucntional consequences that occur when a GPCR is activated.
  • Item
    Functional identification and initial characterization of a fish co-receptor involved in aversive signaling
    (Georgia Institute of Technology, 2009-05-18) Cohen, Staci Padove
    Chemoreception plays an important role in predator-prey interactions and feeding dynamics. While the chemoreception of attractant or pleasant tasting compounds has been well studied, aversive chemoreceptive signaling has been difficult to investigate behaviorally in an ecological context because these interactions are species- and context- specific and deterrent compounds vary among prey. Using the coral reef system, this thesis explores on a molecular level the deterrent mechanism underlying detection by fish predators of an aversive compound, in order to gain a greater understanding of predator-prey interactions in this community. Like other organisms that are sessile or slow-moving, marine sponges have special mechanisms for defense from predation, commonly containing aversive-tasting compounds that defend these organisms from predation. To this end, we sought to identify and characterize a fish chemoreceptor that detects one or more of these compounds. We isolated a single cDNA clone encoding RAMP-like triterpene glycoside receptor (RL-TGR), a novel co-receptor involved in the signaling of triterpene glycosides. This co-receptor appears to be structurally and functionally related to receptor activity-modifying proteins (RAMPs), a family of co-receptors that physically associate with and modify the activity of G protein-coupled receptors (GPCRs). Expression in Xenopus oocytes showed that it responds to triterpene glycosides in a receptor-mediated manner and requires co-expression of a GPCR to enable signaling in oocytes; both of these receptors may be components of a larger signaling complex. A 40 bp portion of the gene is conserved across multiple fish species, but is not found in any other organism with a sequenced genome, suggesting that the expression of this receptor is limited to fish species. RL-TGR is the first identified gene encoding a co-receptor that responds to a chemical defense. This finding may lead the way for the identification of many other receptors that mediate chemical defense signaling in both marine and terrestrial environments, as this protein has the potential to represent the first of an entire family of co-receptors that respond to aversive compounds.