Organizational Unit:
School of Biological Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Computational tools for molecular epidemiology and computational genomics of Neisseria meningitidis
    (Georgia Institute of Technology, 2010-11-17) Katz, Lee Scott
    Neisseria meningitidis is a gram negative, and sometimes encapsulated, diplococcus that causes devastating disease worldwide. For the worldwide genetic surveillance of N. meningitidis, the gold standard for profiling the bacterium uses genetic loci found around the genome. Unfortunately, the software for analyzing the data for these profiles is difficult to use for a variety of reasons. This thesis shows my suite of tools called the Meningococcus Genome Informatics Platform for the analysis of these profiling data. To better understand N. meningitidis, the CDC Meningitis Laboratory and other world class laboratories have adopted a whole genome approach. To facilitate this approach, I have developed a computational genomics assembly and annotation pipeline called the CG-Pipeline. It assembles a genome, predicts locations of various features, and then annotates those features. Next, I developed a comparative genomics browser and database called NBase. Using CG-Pipeline and NBase, I addressed two open questions in N. meningitidis research. First, there are N. meningitidis isolates that cause disease but many that do not cause disease. What is the genomic basis of disease associated versus asymptomatically carried isolates of N. meningitidis? Second, some isolates' capsule type cannot be easily determined. Since isolates are grouped into one of many serogroups based on this capsule, which aids in epidemiological studies and public health response to N. meningitidis, often an isolate cannot be grouped. Thus the question is what is the genomic basis of nongroupability? This thesis addresses both of these questions on a whole genome level.
  • Item
    Algorithm development for next generation sequencing-based metagenome analysis
    (Georgia Institute of Technology, 2010-08-26) Kislyuk, Andrey O.
    We present research on the design, development and application of algorithms for DNA sequence analysis, with a focus on environmental DNA (metagenomes). We present an overview and primer on algorithm development for bioinformatics of metagenomes; work on frameshift detection in DNA sequencing data; work on a computational pipeline for the assembly, feature prediction, annotation and analysis of bacterial genomes; work on unsupervised phylogenetic clustering of metagenomic fragments using Markov Chain Monte Carlo methods; and work on estimation of bacterial genome plasticity and diversity, potential improvements to the measures of core and pan-genomes.
  • Item
    Epigenetic regulation of the human genome by transposable elements
    (Georgia Institute of Technology, 2010-07-07) Huda, Ahsan
    Nearly one half of the human genome is composed of transposable elements (TEs). Once dismissed as 'selfish' or 'junk' DNA, TEs have also been implicated in a numerous functions that serve the needs of their host genome. I have evaluated the role of TEs in mediating the epigenetic mechanisms that serve to regulate human gene expression. These findings can be broadly divided into two major mechanisms by which TEs affect human gene expression; by modulating nucleosome binding in the promoter regions and by recruiting epigenetic histone modifications that enable them to serve as promoters and enhancers. Thus. the studies encompassed in this thesis elucidate the contributions of TEs in epigenetically regulating human gene expression on a global as well as local scale.