Organizational Unit:
School of Biological Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Genetic and physical interaction of Sgt2 protein with prion-chaperone machinery
    (Georgia Institute of Technology, 2011-08-10) Pan, Tao
    The word "Prion" refers to self-perpetuating protein aggregates that cause neurodegenerative diseases in mammals. It is a protein isoform that has undergone a conformational change which converts the normal form of the protein into the infectious form with the same amino acid sequence. Yeast [PSI+] prion is the prion isoform of Sup35 protein, a translation termination factor eRF3. It has been suggested that prion [PSI+] is controlled by the ensemble of chaperones with Hsp104 playing the major role. The previous work performed in the Chernoffs lab showed that the defective GET pathway caused by get led to the defect in [PSI+] curing by excess Hsp104. The GET pathway is a system responsible for transporting newly synthesized TA-protein to the ER membrane, and the components which have been proven to be involved in this pathway include: Get1, Get2, Get3, Get4, Get5 and Sgt2. In this study we describe the mechanism underlying the effect of the defective GET pathway on [PSI+]. We demonstrate that Sgt2, one of the components of GET pathway, interacts with Sup35 in both [PSI+] and [psi-] strains through its prion domain. Overproduction of Sgt2 and Hsp70-Ssa is triggered by the defective GET pathway and leads to the protection of [PSI+] aggregates from curing by excess Hsp104. We show that the direct interaction between Sgt2 and Hsp70-Ssa is not required for this protective effect.
  • Item
    Effects of the components of the Get pathway on prion propagation
    (Georgia Institute of Technology, 2007-11-15) Bariar, Bhawana
    Yeast prions e.g. [PSI+], [PIN+] and [URE3] are similar to mammalian amyloids that cause neurodegenerative diseases. [PSI+] is the aggregated self-perpetuating (prion) isoform of Sup35, a translation termination factor. The molecular chaperone Hsp104 plays a crucial role in the maintenance and propagation of [PSI+]. Deletion of the GET2 gene has been shown to cause a [PSI+] curing defect by excess Hsp104 and [PSI+] instability on synthetic medium (S. Muller, J. Patterson and Y. Chernoff, unpublished data; and J. Patterson Honors Thesis). Get2 is a membrane protein working in a complex with Get1 and Get3 proteins. This complex, called GET (Golgi-to-ER Traffic), is known to retrieve resident ER proteins from Golgi. In this particular study we provide further evidence for the connection between the GET pathway and yeast prions. The get2 deletion also leads to a detectable loss of [PIN+] prion on synthetic medium. The role of the other two members of the Get complex in prion propagation is also explored. The levels and the activity of Hsp104 in the get2 mutants is analyzed. The size of [PSI+] aggregates in the get2Δ strain is compared to that found in wild type. Finally, other possible mechanisms for the effect of get2 on prion maintenance and propagation are addressed.
  • Item
    Interactions of the chaperones and components of UB system in the formation and propagation of the yeast prion [PSI+]
    (Georgia Institute of Technology, 2005-06-28) Tennant, Esther Paula
    Three of the best-characterized prions of Saccharomyces cerevisiae are [PSI+], [URE3], and [PIN+]. This study focuses on the prions [PSI+] and [PIN+]. [PSI+] is the prion isoforms of the protein Sup35 that functions as a eRF3 translational termination factor. The presence of [PSI+] is detected by the partial loss of function of Sup35. The prion [PIN+] is the isoform of the protein Rnq1, and this proteins function is unknown. The presence of the prion [PIN+] is necessary for the de novo formation of the prion [PSI+] (Derkatch et al., 1997). The chaperone, Hsp104, belongs to an evolutionary conserved Hsp100 family of proteins that participate in a various number of cellular processes (Schirmer et al., 1996). Hsp104, in particular, is responsible for the cells adaptation to heat shock, it controls spore viability and the long-term viability of starving vegetative cells. (Sanchez and Linquist, 1990; Sanchez et al.,1992) It is an ATPase that has been shown to promote solubilization of aggregated protein (Parsel et al., 1991). A unique relationship exists between Hsp104 levels within the cell and the maintenance of the prion [PSI+]. The over production of Hsp104 eliminates [PSI+] (Chernoff 1995). This seems logical considering Hsp104 is a disaggregase, and it is reasonable to assume that the over production provides sufficient resources to break the aggregates into portions that are accessible to either other chaperones which would facilitate the proper folding or perhaps the system responsible for the elimination of unusable proteins, such as the ubiquitin-proteasome system. This study examines the role of the ubiquitin-proteasome system in curing of [PSI+] by Hsp104. The role of alternate pathways, in which the prion isoform is refolded into it correct, functional conformation by the action of the chaperones Ssb1 and Ssb2 is examined. These results suggest that the combination of both the degradation pathway and the refolding of proteins are involved in curing of [PSI+] by Hsp104 over production.
  • Item
    Genetic analysis of the cellular control of [PSI] prion
    (Georgia Institute of Technology, 1999-12) Zink, Amy Darlene