Organizational Unit:
School of Biological Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 7 of 7
  • Item
    Inverted repeats as a source of eukaryotic genome instability
    (Georgia Institute of Technology, 2008-07-08) Narayanan, Vidhya
    Chromosomal rearrangements play a major role in the evolution of eukaryotic genomes. Genomic aberrations are also a hallmark of many tumors and are associated with a number of hereditary diseases in humans. The presence of repetitive sequences that can adopt non-canonical DNA structures is one of the factors which can predispose chromosomal regions where they reside to instability. Palindromic sequences (inverted repeats with or without a unique sequence between them) that can adopt hairpin or cruciform structures are frequently found in regions that are prone for gross chromosomal rearrangements (GCRs) in somatic and germ cells in different organisms. Direct physical evidence was obtained that double-strand breaks (DSBs) occur at the location of long inverted repeats, a triggering event for the genomic instability. However, the mechanisms by which palindromic sequences lead to chromosomal fragility are largely unknown. The overall goal of this research is to elucidate the mechanisms of DSB and GCR generation by palindromic sequences in yeast, Saccharomyces cerevisiae.
  • Item
    Prion species barrier at the short phylogenetic distances in the yeast model
    (Georgia Institute of Technology, 2008-07-07) Chen, Buxin
    Prions are self-perpetuating and, in most cases, aggregation-prone protein isoforms that transmit neurodegenerative diseases in mammals and control heritable traits in yeast. Prion conversion requires a very high level of identity of the interacting protein sequences. Decreased transmission of the prion state between divergent proteins is termed "species barrier" and was thought to occur due to the inability of divergent prion proteins to co-aggregate. Species barrier can be overcome in cross-species infections, for example from "mad cows" to humans. We studied the counterparts of yeast prion protein Sup35, originated from three different species of the Saccharomyces sensu stricto group and exhibiting the range of prion domain divergence that overlaps with the range of divergence observed among distant mammalian species. Heterologous Sup35 proteins co-aggregated in S. cerevisiae cells. However, in vivo cross-species prion conversion was decreased and in vitro polymerization was cross-inhibited in at least some heterologous combinations, thus demonstrating the existence of prion species barrier. Our data suggests that species-specificity of prion transmission is controlled at the level of conformational transition rather than co-aggregation. We have shown the Sup35 prion domain is sufficient for the species barrier among the S. sensu stricto species, and constructed SUP35 chimeric prion domains, combining the subregions of various origins Our data demonstrated in different cross-species combinations, different modules of prion domain play a crucial role in the controlling of species-specificity of prion transmission. One essential amino acid position has been identified in S. cerevisiae and S. paradoxus system. Our data support a model suggesting that identity of the short amyloidogenic sequences is crucial for the species barrier. Sup35 originated from three different species of the S. sensu stricto group were capable of forming a prion in S. cerevisiae. However, it was not known whether they are capable of generating and maintaining the prion state in the homologous cell environment. We have constructed the S. paradoxus and S. bayanus strains with appropriate markers, and we were able to demonstrate de novo [PSI+] formation in S. paradoxus but not in S. bayanus. Our data show that [PSI+] formation is not a unique property of S. cerevisiae.
  • Item
    Effects of the components of the Get pathway on prion propagation
    (Georgia Institute of Technology, 2007-11-15) Bariar, Bhawana
    Yeast prions e.g. [PSI+], [PIN+] and [URE3] are similar to mammalian amyloids that cause neurodegenerative diseases. [PSI+] is the aggregated self-perpetuating (prion) isoform of Sup35, a translation termination factor. The molecular chaperone Hsp104 plays a crucial role in the maintenance and propagation of [PSI+]. Deletion of the GET2 gene has been shown to cause a [PSI+] curing defect by excess Hsp104 and [PSI+] instability on synthetic medium (S. Muller, J. Patterson and Y. Chernoff, unpublished data; and J. Patterson Honors Thesis). Get2 is a membrane protein working in a complex with Get1 and Get3 proteins. This complex, called GET (Golgi-to-ER Traffic), is known to retrieve resident ER proteins from Golgi. In this particular study we provide further evidence for the connection between the GET pathway and yeast prions. The get2 deletion also leads to a detectable loss of [PIN+] prion on synthetic medium. The role of the other two members of the Get complex in prion propagation is also explored. The levels and the activity of Hsp104 in the get2 mutants is analyzed. The size of [PSI+] aggregates in the get2Δ strain is compared to that found in wild type. Finally, other possible mechanisms for the effect of get2 on prion maintenance and propagation are addressed.
  • Item
    Interactions of the chaperones and components of UB system in the formation and propagation of the yeast prion [PSI+]
    (Georgia Institute of Technology, 2005-06-28) Tennant, Esther Paula
    Three of the best-characterized prions of Saccharomyces cerevisiae are [PSI+], [URE3], and [PIN+]. This study focuses on the prions [PSI+] and [PIN+]. [PSI+] is the prion isoforms of the protein Sup35 that functions as a eRF3 translational termination factor. The presence of [PSI+] is detected by the partial loss of function of Sup35. The prion [PIN+] is the isoform of the protein Rnq1, and this proteins function is unknown. The presence of the prion [PIN+] is necessary for the de novo formation of the prion [PSI+] (Derkatch et al., 1997). The chaperone, Hsp104, belongs to an evolutionary conserved Hsp100 family of proteins that participate in a various number of cellular processes (Schirmer et al., 1996). Hsp104, in particular, is responsible for the cells adaptation to heat shock, it controls spore viability and the long-term viability of starving vegetative cells. (Sanchez and Linquist, 1990; Sanchez et al.,1992) It is an ATPase that has been shown to promote solubilization of aggregated protein (Parsel et al., 1991). A unique relationship exists between Hsp104 levels within the cell and the maintenance of the prion [PSI+]. The over production of Hsp104 eliminates [PSI+] (Chernoff 1995). This seems logical considering Hsp104 is a disaggregase, and it is reasonable to assume that the over production provides sufficient resources to break the aggregates into portions that are accessible to either other chaperones which would facilitate the proper folding or perhaps the system responsible for the elimination of unusable proteins, such as the ubiquitin-proteasome system. This study examines the role of the ubiquitin-proteasome system in curing of [PSI+] by Hsp104. The role of alternate pathways, in which the prion isoform is refolded into it correct, functional conformation by the action of the chaperones Ssb1 and Ssb2 is examined. These results suggest that the combination of both the degradation pathway and the refolding of proteins are involved in curing of [PSI+] by Hsp104 over production.
  • Item
    Interactions between endogenous prions, chaperones and polyglutamine proteins in the yeast model
    (Georgia Institute of Technology, 2005-03-16) Gokhale, Kavita Chandan
    Poly-Q expanded exon 1 of huntingtin (Q103) fused to GFP is toxic to yeast cells containing endogenous yeast prions, [PIN+] ([RNQ+]) and/or [PSI+], which presumably serve as aggregation nuclei. Propagation of yeast prions is modulated by the chaperones of Hsp100/70/40 complex. While some chaperones were reported to influence poly-Q aggregation in yeast, it was not clear whether they do it directly or via affecting yeast prions. Our data show that while dominant negative Hsp104 mutants antagonize poly-Q aggregation and toxicity by eliminating endogenous yeast prions, some mutant alleles of Hsp104 decreases size and ameliorate toxicity of poly-Q aggregates without affecting prion propagation. Elevated levels of the yeast Hsp40 proteins, Ydj1 and Sis1, exhibit opposite effects on poly-Q aggregation and toxicity without influencing prion propagation. Among the yeast Hsp70s, only overproduction of Ssa4 antagonized poly-Q toxicity. We have also isolated dominant Anti-poly-Q-toxicity (AQT) mutants counteracting poly-Q toxicity only in the absence of the major ubiquitin-conjugating enzyme Ubc4. Prion forming potential of other Q-rich proteins and influence of Q and P-rich regions on prion propagation were also studied. Our data connects poly-Q aggregation and toxicity to the stress defense pathway in yeast. As many stress-defense proteins are conserved between yeast and mammals, our data shed light on possible mechanisms modulating poly-Q aggregation and toxicity in mammalian cells.
  • Item
    Genetic, biochemical, and physiological study of yeast prion protein aggregation
    (Georgia Institute of Technology, 2003-05) Wegrzyn, Renee Diane