Organizational Unit:
Rehabilitation Engineering Research Center on Technologies to Support Aging-in-Place for People with Long-Term Disabilities

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Multidimensional Capacitive Sensing for Robot-Assisted Dressing and Bathing
    (Georgia Institute of Technology, 2019-05-24) Erickson, Zackory ; Clever, Henry M. ; Gangaram, Vamsee ; Turk, Greg ; Liu, C. Karen ; Kemp, Charles C.
    Robotic assistance presents an opportunity to benefit the lives of many people with physical disabilities, yet accurately sensing the human body and tracking human motion remain difficult for robots. We present a multidimensional capacitive sensing technique that estimates the local pose of a human limb in real time. A key benefit of this sensing method is that it can sense the limb through opaque materials, including fabrics and wet cloth. Our method uses a multielectrode capacitive sensor mounted to a robot’s end effector. A neural network model estimates the position of the closest point on a person’s limb and the orientation of the limb’s central axis relative to the sensor’s frame of reference. These pose estimates enable the robot to move its end effector with respect to the limb using feedback control. We demonstrate that a PR2 robot can use this approach with a custom six electrode capacitive sensor to assist with two activities of daily living— dressing and bathing. The robot pulled the sleeve of a hospital gown onto able-bodied participants’ right arms, while tracking human motion. When assisting with bathing, the robot moved a soft wet washcloth to follow the contours of able-bodied participants’ limbs, cleaning their surfaces. Overall, we found that multidimensional capacitive sensing presents a promising approach for robots to sense and track the human body during assistive tasks that require physical human-robot interaction.
  • Item
    Collaboration Between a Robotic Bed and a Mobile Manipulator May Improve Physical Assistance for People with Disabilities
    (Georgia Institute of Technology, 2016-08) Kapusta, Ariel ; Chitalia, Yash ; Park, Daehyung ; Kemp, Charles C.
    We present a robotic system designed to provide physical assistance to a person in bed. The system consists of a robotic bed (Autobed) and a mobile manipulator (PR2) that work together. The 3 degree-of-freedom (DoF) robotic bed moves the person’s body and uses a pressure sensing mat to estimate the body’s position. The mobile manipulator positions itself with respect to the bed and compliantly moves a lightweight object with one of its 7-DoF arms. The system optimizes its motions with respect to a task model and a model of the human’s body. The user provides high-level supervision to the system via a web-based interface. We first evaluated the ability of the robotic bed to estimate the location of the head of a person in a supine configuration via a study with 7 able-bodied participants. This estimation was robust to bedding, including a pillow under the person’s head. We then evaluated the ability of the full system to autonomously reach task-relevant poses on a medical mannequin placed in a supine position on the bed. We found that the robotic bed’s motion and perception each improved the overall system’s performance. Our results suggest that this type of multi-robot system could more effectively bring objects to desired locations with respect to the user’s body than a mobile manipulator working alone. This may in turn lead to improved physical assistance for people with disabilities at home and in healthcare facilities, since many assistive tasks involve an object being moved with respect to a person’s body.