Organizational Unit:
Rehabilitation Engineering Research Center on Technologies to Support Aging-in-Place for People with Long-Term Disabilities

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Data-Driven Haptic Perception for Robot-Assisted Dressing
    (Georgia Institute of Technology, 2016-08) Kapusta, Ariel ; Yu, Wenhao ; Bhattacharjee, Tapomayukh ; Liu, C. Karen ; Turk, Greg ; Kemp, Charles C.
    Dressing is an important activity of daily living (ADL) with which many people require assistance due to impairments. Robots have the potential to provide dressing assistance, but physical interactions between clothing and the human body can be complex and difficult to visually observe. We provide evidence that data-driven haptic perception can be used to infer relationships between clothing and the human body during robot-assisted dressing. We conducted a carefully controlled experiment with 12 human participants during which a robot pulled a hospital gown along the length of each person’s forearm 30 times. This representative task resulted in one of the following three outcomes: the hand missed the opening to the sleeve; the hand or forearm became caught on the sleeve; or the full forearm successfully entered the sleeve. We found that hidden Markov models (HMMs) using only forces measured at the robot’s end effector classified these outcomes with high accuracy. The HMMs’ performance generalized well to participants (98.61% accuracy) and velocities (98.61% accuracy) outside of the training data. They also performed well when we limited the force applied by the robot (95.8% accuracy with a 2N threshold), and could predict the outcome early in the process. Despite the lightweight hospital gown, HMMs that used forces in the direction of gravity substantially outperformed those that did not. The best performing HMMs used forces in the direction of motion and the direction of gravity.
  • Item
    A Robotic System for Reaching in Dense Clutter that Integrates Model Predictive Control, Learning, Haptic Mapping, and Planning
    (Georgia Institute of Technology, 2014-09) Bhattacharjee, Tapomayukh ; Grice, Phillip M. ; Kapusta, Ariel ; Killpack, Marc D. ; Park, Daehyung ; Kemp, Charles C.
    We present a system that enables a robot to reach locations in dense clutter using only haptic sensing. Our system integrates model predictive control [1], learned initial conditions [2], tactile recognition of object types [3], haptic mapping, and geometric planning to efficiently reach locations using whole- arm tactile sensing [4]. We motivate our work, present a system architecture, summarize each component of the system, and present results from our evaluation of the system reaching to target locations in dense artificial foliage.