Organizational Unit:
Aerospace Systems Design Laboratory (ASDL)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    A Survey of Ballute Technology for Aerocapture
    (Georgia Institute of Technology, 2005-06) Rohrschneider, Reuben R. ; Braun, Robert D.
    Ballute aerodynamic decelerators have been studied since early in the space age (1960’s), being proposed for aerocapture in the early 1980’s. Significant technology advances in fabric and polymer materials as well as analysis capabilities lend credibility to the potential of ballute aerocapture. The concept of the thin-film ballute for aerocapture shows the potential for large mass savings over propulsive orbit insertion or rigid aeroshell aerocapture. The mass savings of this concept enables a number of high value science missions. Current studies of ballute aerocapture at Titan and Earth may lead to flight test of one or more ballute concepts within the next five years. This paper provides a survey of the literature with application to ballute aerocapture. Special attention is paid to advances in trajectory analysis, hypersonic aerothermodynamics, structural analysis, coupled analysis, and flight tests. Advances anticipated over the next 5 years are summarized.
  • Item
    Development of a Planetary Entry System Synthesis Tool for Conceptual Design and Analysis
    (Georgia Institute of Technology, 2005-06) Kipp, Devin M. ; Dec, John A. ; Wells, Grant William ; Braun, Robert D.
    A Planetary Entry Systems Synthesis Tool, with applications to conceptual design and modeling of entry systems has been developed. This tool is applicable to exploration missions that employ entry, descent and landing or aerocapture. An integrated framework brings together relevant disciplinary analyses and enables rapid design and analysis of the atmospheric entry mission segment. Tool performance has been validated against Mars Pathfinder flight experience and has direct relevance to future NASA robotic and human space exploration systems.