Organizational Unit:
Aerospace Systems Design Laboratory (ASDL)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 6 of 6
  • Item
    Model predictive control (MPC) algorithm for tip-jet reaction drive systems
    (Georgia Institute of Technology, 2009-11-16) Kestner, Brian
    Modern technologies coupled with advanced research have allowed model predictive control (MPC) to be applied to new and often experimental systems. The purpose of this research is to develop a model predictive control algorithm for tip-jet reaction drive system. This system's faster dynamics require an extremely short sampling rate, on the order of 20ms, and its slower dynamics require a longer prediction horizon. This coupled with the fact that the tip-jet reaction drive system has multiple control inputs makes the integration of an online MPC algorithm challenging. In order to apply a model predictive control to the system in question, an algorithm is proposed that combines multiplexed inputs and a feasible cooperative MPC algorithm. In the proposed algorithm, it is hypothesized that the computational burden will be reduced from approximately Hp(Nu + Nx)3 to pHp(Nx+1)3 while maintaining control performance similar to that of a centralized MPC algorithm. To capture the performance capability of the proposed controller, a comparison its performance to that of a multivariable proportional-integral (PI) controller and a centralized MPC is executed. The sensitivity of the proposed MPC to various design variables is also explored. In terms of bandwidth, interactions, and disturbance rejection, the proposed MPC was very similar to that of a centralized MPC or PI controller. Additionally in regards to sensitivity to modeling error, there is not a noticeable difference between the two MPC controllers. Although the constraints are handled adequately for the proposed controller, adjustments can be made in the design and sizing process to improve the constraint handling, so that it is more comparable to that of the centralized MPC. Given these observations, the hypothesis of the dissertation has been confirmed. The proposed MPC does in fact reduce computational burden while maintaining close to centralized MPC performance.
  • Item
    A methodology for the robustness-based evaluation of systems-of-systems alternatives using regret analysis
    (Georgia Institute of Technology, 2008-07-01) Poole, Benjamin Hancock
    After surveying the state-of-the-art in evaluation of alternatives in the defense acquisition process, a methodology for the evaluation of the robustness of systems-of-systems alternatives was proposed. In the methodology, robustness is defined as the integral of the alternative s regret over the likelihood-weighted plausible scenario space. Surrogate modeling techniques were used to overcome shortcomings associated with conventional regret analysis, including the discrete nature of scenario cases and static results. The new methodology, called Global Regret Analysis, was tested using an example problem based on the air campaign over Iraq in Operation Desert Storm. The results of the testing indicate that the methodology can provide a measure of the robustness of different system-of-systems alternatives against a wide range of possible scenarios. The methodology was then demonstrated on the US Air Force s persistent, precision strike mission. The demonstration showed the ability of Global Regret Analysis to overcome issues associated with using a single or other small number of scenarios to evaluate systems-of-systems alternatives. The methodology was then compared to a variety of existing methods and found to have strength for a wide range of evaluation applications. The possibility of applying Global Regret Analysis for military mission planning and opportunities for future work were also discussed.
  • Item
    An Intelligent, Knowledge-based Multiple Criteria Decision Making Advisor for Systems Design
    (Georgia Institute of Technology, 2007-01-16) Li, Yongchang
    Aerospace systems are complex systems with interacting disciplines and technologies. As a result, the Decision Makers (DMs) dealing with such problems are involved in balancing the multiple, potentially conflicting attributes/criteria, transforming a large amount of customer supplied guidelines into a solidly defined set of requirement definitions. A variety of existing decision making methods are available to deal with this type of decision problems. The selection of a most appropriate decision making method is of particular importance since inappropriate decision methods are likely causes of misleading engineering design decisions. The research presented in this dissertation proposes a knowledge-based Multi-criteria Interactive Decision-making Advisor and Synthesis process (MIDAS), which can facilitate the selection of the most appropriate decision making method and which provides insight to the user for fulfilling different preferences. Once the most appropriate method is selected for the given problem, the advisor is also able to aid the DM to reach the final decision by following the rigorous problem solving procedure of the selected method. The MIDAS can also provide guidance as to the requirements needed to be fulfilled by a potentially new method for cases where no suitable method is found. In many other domains, such as complex system operation, decisions are often made in an environment with continuously changing situations. In addition, the decisions are usually completed based on uncertain or incomplete information due to the data availability and the environmental variation. This fact exacerbates the complexity of the decision making process because it results in the difficulties in perfectly and deterministically reasoning about the effects of the decisions and thus make it hard in determining the further decisions. In order to make proper decision and increase the system’s effectiveness, an advanced decision strategy is needed to capture the system’s dynamic characteristics and environmental uncertainty. An autonomous decision making advisor is developed to perform the real-time decision making under uncertainty. The development of the advisor system aims to solve a resource allocation problem to redistribute the limited resources to different agents under various scenarios and try to maximize the total rewards obtained from the resource allocation actions.
  • Item
    A Systematic Process for Adaptive Concept Exploration
    (Georgia Institute of Technology, 2006-11-29) Nixon, Janel Nicole
    This thesis presents a method for streamlining the process of obtaining and interpreting quantitative data for the purpose of creating a low-fidelity modeling and simulation environment. By providing a more efficient means for obtaining such information, quantitative analyses become much more practical for decision-making in the very early stages of design, where traditionally, quants are viewed as too expensive and cumbersome for concept evaluation. The method developed to address this need uses a Systematic Process for Adaptive Concept Exploration (SPACE). In the SPACE method, design space exploration occurs in a sequential fashion; as data is acquired, the sampling scheme adapts to the specific problem at hand. Previously gathered data is used to make inferences about the nature of the problem so that future samples can be taken from the more interesting portions of the design space. Furthermore, the SPACE method identifies those analyses that have significant impacts on the relationships being modeled, so that effort can be focused on acquiring only the most pertinent information. The results show that the combination of a tailored data set, and an informed model structure work together to provide a meaningful quantitative representation of the system while relying on only a small amount of resources to generate that information. In comparison to more traditional modeling and simulation approaches, the SPACE method provides a more accurate representation of the system using fewer resources to generate that representation. For this reason, the SPACE method acts as an enabler for decision making in the very early design stages, where the desire is to base design decisions on quantitative information while not wasting valuable resources obtaining unnecessary high fidelity information about all the candidate solutions. Thus, the approach enables concept selection to be based on parametric, quantitative data so that informed, unbiased decisions can be made.
  • Item
    A Design Space Exploration Process for Large Scale, Multi-Objective Computer Simulations
    (Georgia Institute of Technology, 2006-07-07) Zentner, John Marc
    The primary contributions of this thesis are associated with the development of a new method for exploring the relationships between inputs and outputs for large scale computer simulations. Primarily, the proposed design space exploration procedure uses a hierarchical partitioning method to help mitigate the curse of dimensionality often associated with the analysis of large scale systems. Closely coupled with the use of a partitioning approach, is the problem of how to partition the system. This thesis also introduces and discusses a quantitative method developed to aid the user in finding a set of good partitions for creating partitioned metamodels of large scale systems. The new hierarchically partitioned metamodeling scheme, the lumped parameter model (LPM), was developed to address two primary limitations to the current partitioning methods for large scale metamodeling. First the LPM was formulated to negate the need to rely on variable redundancies between partitions to account for potentially important interactions. By using a hierarchical structure, the LPM addresses the impact of neglected, direct interactions by indirectly accounting for these interactions via the interactions that occur between the lumped parameters in intermediate to top-level mappings. Secondly, the LPM was developed to allow for hierarchical modeling of black-box analyses that do not have available intermediaries with which to partition the system around. The second contribution of this thesis is a graph-based partitioning method for large scale, black-box systems. The graph-based partitioning method combines the graph and sparse matrix decomposition methods used by the electrical engineering community with the results of a screening test to create a quantitative method for partitioning large scale, black-box systems. An ANOVA analysis of the results of a screening test can be used to determine the sparse nature of the large scale system. With this information known, the sparse matrix and graph theoretic partitioning schemes can then be used to create potential sets of partitions to use with the lumped parameter model.
  • Item
    A theoretical treatment of technical risk in modern propulsion system design
    (Georgia Institute of Technology, 2000-05) Roth, Bryce Alexander