Organizational Unit:
Aerospace Systems Design Laboratory (ASDL)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Probabilistic Matching of Turbofan Engine Performance Models to Test Data
    (Georgia Institute of Technology, 2005-06-06) Roth, Bryce Alexander ; Doel, David L. ; Cissell, Jeffrey J.
    This paper describes the development of an improved method for reliable, repeatable, and accurate matching of engine performance models to test data. The centerpiece of this approach is a minimum variance estimator algorithm with a priori estimates which addresses both deterministic and probabilistic aspects of the problem. Specific probabilistic aspects include uncertainty in the measurements, prior expectations on model matching parameters, and noise in the power setting parameters. The algorithm is able to produce optimal results using any number of measurements and model matching parameters and can therefore take advantage of all measured data to produce the best possible match. This improves on current matching algorithms which require that the number of measured parameters be equal to the number of model matching parameters. This algorithm has been implemented in the Numerical Propulsion System Simulation (NPSS) and tested on a generic high-bypass turbofan model typical of those used in commercial service. The baseline engine model and simulated test data are described in detail. Several exercises are discussed to illustrate results available from this algorithm including the matching of a typical power calibration data set and matching of a typical production engine data set.
  • Item
    Estimation of Turbofan Engine Performance Model Accuracy and Confidence Bounds
    (Georgia Institute of Technology, 2003-09) Roth, Bryce Alexander ; Mavris, Dimitri N. ; Doel, David L.
    This paper explores the application of Inference and Bayesian Updating principles as a means to efficiently incorporate probabilistic data into the turbine engine status model matching process. This approach allows efficient estimation of nominal model match parameters from test data and also enables quantification of model accuracy and confidence bounds. The basic concepts are developed in detail and formulated into a status matching approach. This method is then applied to a simple surrogate matching problem using a cantilever beam matching exercise to illustrate the methods in a clear and easy-to-understand way. Typical results are presented and are directly analogous to status matching of a gas turbine engine cycle model.