Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 6 of 6
  • Item
    Development and Testing of a 3-D-Printed Cold Gas Thruster for an Interplanetary CubeSat
    (Georgia Institute of Technology, 2018-03) Lightsey, E. Glenn ; Stevenson, Terry ; Sorgenfrei, Matthew
    This paper describes the development and testing of a cold gas attitude control thruster produced for the BioSentinel spacecraft, a CubeSat that will operate beyond Earth orbit. The thruster will reduce the spacecraft rotational velocity after deployment, and for the remainder of the mission it will periodically unload momentum from the reaction wheels. The majority of the thruster is a single piece of 3-D-printed additive material which incorporates the propellant tanks, feed pipes, and nozzles. Combining these elements allows for more efficient use of the available volume and reduces the potential for leaks. The system uses a high-density commercial refrigerant as the propellant, due to its high volumetric impulse efficiency, as well as low toxicity and low storage pressure. Two engineering development units and one flight unit have been produced for the BioSentinel mission. The design, development, and test campaign for the thruster system is presented.
  • Item
    Analytic Free-Molecular Aerodynamics for Rapid Propagation of Resident Space Objects
    (American Institute of Aeronautics and Astronautics, 2018-01) Hart, Kenneth A. ; Simonis, Kyle R. ; Steinfeldt, Bradley A. ; Braun, Robert D.
    Aerodynamic forces and moments are significant perturbations on low-Earth-orbiting objects, second in magnitude to the nonspherical gravity field. Traditionally, the aerodynamic perturbations are calculated using a direct simulation Monte Carlo method. Under certain assumptions, these forces and moments can be described analytically via free-molecular flow theory. Using symbolic manipulation techniques, exact expressions for the free-molecular aerodynamics of analytic shapes can be derived. In this investigation, analytic expressions for the aerodynamic force and moment coefficients of primitive and composite parametric surfaces are derived, then validated against industry-standard direct simulation Monte Carlo techniques. A framework for the rapid and accurate calculation of free-molecular aerodynamics of composite geometries based on superposition is described. This framework is applied to axisymmetric composite geometries. Results within 6% of direct simulation Monte Carlo calculations are obtained in 0.05% of the time. The analytic aerodynamics models enable rapid trajectory and uncertainty propagation for low-Earth-orbiting objects. A case study on aerodynamic perturbations of a low-Earth-orbit nanosatellite is included to demonstrate application of these analytic models. The case study shows that these derived analytical free-molecular aerodynamics produce results that are applicable to inclusion in rapid trajectory propagation tools for orbit prediction and conceptual mission design. Item Description: Analytic hypersonic rarefied aerodynamics paper published in the Journal of Spacecraft in Rockets, with primary application being resident space objects in low-Earth orbit. Supplemental CDF file contains equations that would not fit in full paper.
  • Item
    State Estimation using Gaussian Process Regression for Colored Noise Systems
    (Georgia Institute of Technology, 2017-06) Lee, Kyuman ; Johnson, Eric N.
    The goal of this study is to use Gaussian process (GP) regression models to estimate the state of colored noise systems. The derivation of a Kalman filter assumes that the process noise and measurement noise are uncorrelated and both white. In relaxing those assumptions, the Kalman filter equations were modified to deal with the non-whiteness of each noise source. The standard Kalman filter ran on an augmented system that had white noises and other approaches were also introduced depending on the forms of the noises. Those existing methods can only work when the characteristics of the colored noise are perfectly known. However, it is usually difficult to model a noise without additional knowledge of the noise statistics. When the parameters of colored noise models are totally unknown and the functions of each underlying model (nonlinear dynamic and measurement functions) are uncertain or partially known, filtering using GP-Color models can perform regardless of whatever forms of colored noise. The GPs can learn the residual outputs between the GP models and the approximate parametric models (or between actual sensor readings and predicted measurement readings), as a member of a distribution over functions, typically with a mean and covariance function. Lastly, a series of simulations, including Monte Carlo results, will be run to compare the GP based filtering techniques with the existing methods to handle the sequentially correlated noise.
  • Item
    Parachute Dynamic Stability and the Effects of Apparent Inertia
    (Georgia Institute of Technology, 2014-06) Ginn, Jason M. ; Clark, Ian G. ; Braun, Robert D.
    The dynamic stability and equilibrium conditions of a parachute are studied using a six degree of freedom dynamic model that includes apparent inertia effects. Existing parachute dynamic models are discussed and the selection of a relevant model is shown. The chosen dynamic model that incorporates apparent inertia is summarized and used for analysis. The moments on the parachute system caused by the apparent inertia term are shown to affect both the equilibrium point and the stability of the system. The adjustment to equilibrium is observed and discussed. A small disturbance stability analysis is performed to give a stability criterion in terms of the slope of the tangential aerodynamic force. The dynamic modes, pitching and coning, are discussed. Computational integration of the equations of motion is used to validate the small disturbance analysis as well as to show the effects of large disturbances.
  • Item
    A Comparison of Automatic Nap-of-the-Earth Guidance Strategies for Helicopters
    (Georgia Institute of Technology, 2014-05) Johnson, Eric N. ; Mooney, John G.
    This paper describes updated results from a partnership between the Sikorsky Aircraft Corporation and the Georgia Institute of Technology to develop, improve, and flight test a sensor, guidance, navigation, control, and real-time flight path optimization system to support high performance Nap-of-the-Earth (NOE) helicopter flight.
  • Item
    Development and Evaluation of an Automated Path Planning Aid
    (Georgia Institute of Technology., 2012-11) Watts, Robert ; Christmann, Hans Claus ; Johnson, Eric N. ; Feigh, Karen M. ; Tsiotras, Panagiotis
    Handling en route emergencies in modern transport aircraft through adequate teamwork between the pilot, the crew and the aircraft’s automation systems is an ongoing and active field of research. An automated path planning aid tool can assist pilots with the tasks of selecting a convenient landing site and developing a safe path to land at this site in the event of an onboard emergency. This paper highlights the pilot evaluation results of a human factors study as part of such a proposed automated planning aid. Focusing on the interactions between the pilot and the automated planning aid, the presented results suggest that a particular implementation of the pilot aid interface, which uses a simple dial to sort the most promising landing sites, was effective. This selectable sorting capability, motivated by the anticipated cognitive mode of the pilot crew, improved the quality of the selected site for the majority of the cases tested. Although the presented approach increased the average time required for the selection of an alternate landing site, it decreased the time to complete the task in the case of emergencies unfamiliar to the pilot crew.