Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 34
  • Item
    Physics based modeling of axial compressor stall
    (Georgia Institute of Technology, 2009-08-28) Zaki, Mina Adel
    Axial compressors are used in a wide variety of aerodynamic applications and are one of the most important components in aero-engines. The operability of compressors is however limited at low-mass flow rates by fluid dynamic instabilities such as stall and surge. These instabilities can lead to engine failure and loss of engine power which can compromise the aircraft safety and reliability. Therefore, a better understanding of how stall occurs and the causes behind its inception is extremely important. In the vicinity of the stall line, the flow field is inherently unsteady due to the interactions between adjacent rows of blades, formation of separation cells, and the viscous effects including shock-boundary layer interaction. Accurate modeling of these phenomena requires a proper set of stable and accurate boundary conditions at the rotorstator interface that conserve mass, momentum and energy, while eliminating false reflections. As a part of this effort, an existing 3D Navier-Stokes analysis for modeling single stage compressors has been modified to model multi-stage axial compressors and turbines. Several rotor-stator interface boundary conditions have been implemented. These have been evaluated for the first stage (a stator and a rotor) of the two stage fuel turbine on the space shuttle main engine (SSME). Their effectiveness in conserving global properties such as mass, momentum, and energy across the interface, while yielding good performance predictions has been evaluated. While all the methods gave satisfactory results, a characteristic based approach and an unsteady sliding mesh approach are found to work best. Accurate modeling of the formation of stall cells requires the use of advanced turbulence models. As a part of this effort, a new advanced turbulence model called Hybrid RANS/KES (HRKES) has been developed and implemented. This model solves Menter's k--SST model near walls and switches to a Kinetic Eddy Simulation (KES) model away from walls. The KES model solves directly for local turbulent kinetic energy and local turbulent length scales, alleviating the grid spacing dependency of the length scales found in other Detached Eddy Simulation (DES) and Hybrid RANS/LES (HRLES) models. Within the HRKES model, combinations of two different blending functions have been evaluated for blending the near wall model to the KES model. The use of realizability constraints to bound the KES model parameters has also been studied for several internal and external flows. The current methodology is used in the prediction of the performance map for the NASA Stage 35 compressor configuration as a representative of a modern compressor stage. The present approach is found to satisfactory predict the onset of stall. It is found that the rotor blade tip leakage vortex and its interaction with the shock wave is mainly the reason behind the stall inception in this compressor stage.
  • Item
    A multi-fidelity framework for physics based rotor blade simulation and optimization
    (Georgia Institute of Technology, 2008-11-17) Collins, Kyle Brian
    New helicopter rotor designs are desired that offer increased efficiency, reduced vibration, and reduced noise. This problem is multidisciplinary, requiring knowledge of structural dynamics, aerodynamics, and aeroacoustics. Rotor optimization requires achieving multiple, often conflicting objectives. There is no longer a single optimum but rather an optimal trade-off space, the Pareto Frontier. Rotor Designers in industry need methods that allow the most accurate simulation tools available to search for Pareto designs. Computer simulation and optimization of rotors have been advanced by the development of "comprehensive" rotorcraft analysis tools. These tools perform aeroelastic analysis using Computational Structural Dynamics (CSD). Though useful in optimization, these tools lack built-in high fidelity aerodynamic models. The most accurate rotor simulations utilize Computational Fluid Dynamics (CFD) coupled to the CSD of a comprehensive code, but are generally considered too time consuming where numerous simulations are required like rotor optimization. An approach is needed where high fidelity CFD/CSD simulation can be routinely used in design optimization. This thesis documents the development of physics based rotor simulation frameworks. A low fidelity model uses a comprehensive code with simplified aerodynamics. A high fidelity model uses a parallel processor capable CFD/CSD methodology. Both frameworks include an aeroacoustic simulation for prediction of noise. A synergistic process is developed that uses both frameworks together to build approximate models of important high fidelity metrics as functions of certain design variables. To test this process, a 4-bladed hingeless rotor model is used as a baseline. The design variables investigated include tip geometry and spanwise twist. Approximation models are built for high fidelity metrics related to rotor efficiency and vibration. Optimization using the approximation models found the designs having maximum rotor efficiency and minimum vibration. Various Pareto generation methods are used to find frontier designs between these two anchor designs. The Pareto anchors are tested in the high fidelity simulation and shown to be good designs, providing evidence that the process has merit. Ultimately, this process can be utilized by industry rotor designers with their existing tools to bring high fidelity analysis into the preliminary design stage of rotors.
  • Item
    A First Principles Based Methodology for Design of Axial Compressor Configurations
    (Georgia Institute of Technology, 2007-07-09) Iyengar, Vishwas
    Axial compressors are widely used in many aerodynamic applications. The design of an axial compressor configuration presents many challenges. Until recently, compressor design was done using 2-D viscous flow analyses that solve the flow field around cascades or in meridional planes or 3-D inviscid analyses. With the advent of modern computational methods it is now possible to analyze the 3-D viscous flow and accurately predict the performance of 3-D multistage compressors. It is necessary to retool the design methodologies to take advantage of the improved accuracy and physical fidelity of these advanced methods. In this study, a first-principles based multi-objective technique for designing single stage compressors is described. The study accounts for stage aerodynamic characteristics, rotor-stator interactions and blade elastic deformations. A parametric representation of compressor blades that include leading and trailing edge camber line angles, thickness and camber distributions was used in this study A design of experiment approach is used to reduce the large combinations of design variables into a smaller subset. A response surface method is used to approximately map the output variables as a function of design variables. An optimized configuration is determined as the extremum of all extrema. This method has been applied to a rotor-stator stage similar to NASA Stage 35. The study has two parts: a preliminary study where a limited number of design variables were used to give an understanding of the important design variables for subsequent use, and a comprehensive application of the methodology where a larger, more complete set of design variables are used. The extended methodology also attempts to minimize the acoustic fluctuations at the rotor-stator interface by considering a rotor-wake influence coefficient (RWIC). Results presented include performance map calculations at design and off-design speed along with a detailed visualization of the flow field at design and off-design conditions. The present methodology provides a way to systematically screening through the plethora of design variables. By selecting the most influential design parameters and by optimizing the blade leading edge and trailing edge mean camber line angles, phenomenon s such as tip blockages, blade-to-blade shock structures and other loss mechanisms can be weakened or alleviated. It is found that these changes to the configuration can have a beneficial effect on total pressure ratio and stage adiabatic efficiency, thereby improving the performance of the axial compression system. Aeroacoustic benefits were found by minimizing the noise generating mechanisms associated with rotor wake-stator interactions. The new method presented is reliable, low time cost, and easily applicable to industry daily design optimization of turbomachinery blades.
  • Item
    Computational Studies of the Effects of Active and Passive Circulation Enhancement Concepts on Wind Turbine Performance
    (Georgia Institute of Technology, 2007-06-14) Tongchitpakdee, Chanin
    With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the accuracy of the results at high wind speeds are improved. Results of circulation enhancement concepts show that, at low wind speed (attached flow) conditions, a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients. The effects of jet slot height and pulsed jet are also investigated in this study. A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to the Coanda jet. At high wind speed where the flow is separated, both the Coanda jet and Gurney flap become ineffective. Results of leading edge blowing indicate that a leading edge blowing jet is found to be beneficial in increasing power generation at high wind speeds. The effect of Gurney flap angle is also studied. Gurney flap angle has significant influence in power generation. Higher power output is obtained at higher flap angles.
  • Item
    Computational studies of the horizontal axis wind turbines in high wind speed condition using advanced turbulence models
    (Georgia Institute of Technology, 2006-08-24) Benjanirat, Sarun
    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-omega and Shear Stress Transport (k-omega-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.
  • Item
  • Item
    Computational studies of horizontal axis wind turbines
    (Georgia Institute of Technology, 2001-05) Xu, Guanpeng
  • Item
    A hybrid flow analysis for rotors in forward flight
    (Georgia Institute of Technology, 2000-08) Yang, Zhong
  • Item
    Numerical simulation of rotating stall and surge alleviation in axial compressors
    (Georgia Institute of Technology, 2000-08) Niazi, Saeid