Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    State Estimation using Gaussian Process Regression for Colored Noise Systems
    (Georgia Institute of Technology, 2017-06) Lee, Kyuman ; Johnson, Eric N.
    The goal of this study is to use Gaussian process (GP) regression models to estimate the state of colored noise systems. The derivation of a Kalman filter assumes that the process noise and measurement noise are uncorrelated and both white. In relaxing those assumptions, the Kalman filter equations were modified to deal with the non-whiteness of each noise source. The standard Kalman filter ran on an augmented system that had white noises and other approaches were also introduced depending on the forms of the noises. Those existing methods can only work when the characteristics of the colored noise are perfectly known. However, it is usually difficult to model a noise without additional knowledge of the noise statistics. When the parameters of colored noise models are totally unknown and the functions of each underlying model (nonlinear dynamic and measurement functions) are uncertain or partially known, filtering using GP-Color models can perform regardless of whatever forms of colored noise. The GPs can learn the residual outputs between the GP models and the approximate parametric models (or between actual sensor readings and predicted measurement readings), as a member of a distribution over functions, typically with a mean and covariance function. Lastly, a series of simulations, including Monte Carlo results, will be run to compare the GP based filtering techniques with the existing methods to handle the sequentially correlated noise.
  • Item
    A Comparison of Automatic Nap-of-the-Earth Guidance Strategies for Helicopters
    (Georgia Institute of Technology, 2014-05) Johnson, Eric N. ; Mooney, John G.
    This paper describes updated results from a partnership between the Sikorsky Aircraft Corporation and the Georgia Institute of Technology to develop, improve, and flight test a sensor, guidance, navigation, control, and real-time flight path optimization system to support high performance Nap-of-the-Earth (NOE) helicopter flight.
  • Item
    Development and Evaluation of an Automated Path Planning Aid
    (Georgia Institute of Technology., 2012-11) Watts, Robert ; Christmann, Hans Claus ; Johnson, Eric N. ; Feigh, Karen M. ; Tsiotras, Panagiotis
    Handling en route emergencies in modern transport aircraft through adequate teamwork between the pilot, the crew and the aircraft’s automation systems is an ongoing and active field of research. An automated path planning aid tool can assist pilots with the tasks of selecting a convenient landing site and developing a safe path to land at this site in the event of an onboard emergency. This paper highlights the pilot evaluation results of a human factors study as part of such a proposed automated planning aid. Focusing on the interactions between the pilot and the automated planning aid, the presented results suggest that a particular implementation of the pilot aid interface, which uses a simple dial to sort the most promising landing sites, was effective. This selectable sorting capability, motivated by the anticipated cognitive mode of the pilot crew, improved the quality of the selected site for the majority of the cases tested. Although the presented approach increased the average time required for the selection of an alternate landing site, it decreased the time to complete the task in the case of emergencies unfamiliar to the pilot crew.