Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 6 of 6
  • Item
    Characterizing High-Energy-Density Propellants for Space Propulsion Applications
    (Georgia Institute of Technology, 2007-04-05) Kokan, Timothy Salim
    There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N, N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM propellants. The case study consists of the National Aeronautics and Space Administrations (NASA) Exploration Systems Architecture Study (ESAS) Lunar Surface Access Module (LSAM). The results of this study show that the use of HEDM propellants instead of hypergolic propellants can lower the gross weight of the LSAM and may be an attractive alternative to the current baseline hypergolic propellant choice.
  • Item
    A Study of Variable Thrust, Variable Specific Impulse Trajectories for Solar System Exploration
    (Georgia Institute of Technology, 2004-12-07) Sakai, Tadashi
    A study has been performed to determine the advantages and disadvantages of variable thrust and variable specific impulse (Isp) trajectories for solar system exploration. There have been several numerical research efforts for variable thrust, variable Isp, power-limited trajectory optimization problems. All of these results conclude that variable thrust, variable Isp (variable specific impulse, or VSI) engines are superior to constant thrust, constant Isp (constant specific impulse, or CSI) engines. However, most of these research efforts assume a mission from Earth to Mars, and some of them further assume that these planets are circular and coplanar. Hence they still lack the generality. This research has been conducted to answer the following questions: - Is a VSI engine always better than a CSI engine or a high thrust engine for any mission to any planet with any time of flight considering lower propellant mass as the sole criterion? - If a planetary swing-by is used for a VSI trajectory, is the fuel savings of a VSI swing-by trajectory better than that of a CSI swing-by or high thrust swing-by trajectory? To support this research, an unique, new computer-based interplanetary trajectory calculation program has been created. This program utilizes a calculus of variations algorithm to perform overall optimization of thrust, Isp, and thrust vector direction along a trajectory that minimizes fuel consumption for interplanetary travel. It is assumed that the propulsion system is power-limited, and thus the compromise between thrust and Isp is a variable to be optimized along the flight path. This program is capable of optimizing not only variable thrust trajectories but also constant thrust trajectories in 3-D space using a planetary ephemeris database. It is also capable of conducting planetary swing-bys. Using this program, various Earth-originating trajectories have been investigated and the optimized results have been compared to traditional CSI and high thrust trajectory solutions. Results show that VSI rocket engines reduce fuel requirements for any mission compared to CSI rocket engines. Fuel can be saved by applying swing-by maneuvers for VSI engines, but the effects of swing-bys due to VSI engines are smaller than that of CSI or high thrust engines.
  • Item
    Technique for the optimization of the powerhead configuration and performance of liquid rocket engines
    (Georgia Institute of Technology, 2003-08) St. Germain, Brad David
  • Item
    Distributed uncertainty analysis techniques for conceptual launch vehicle design
    (Georgia Institute of Technology, 2001-08) McCormick, David Jeremy
  • Item
    A technique for rapid prediction of aftbody nozzle performance for hypersonic launch vehicle design
    (Georgia Institute of Technology, 2001-08) Bradford, John Edward