Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 7 of 7
  • Item
    USING A HANDS-ON ROBOTICS PROJECT TO AFFECT SKILL DEVELOPMENT IN A CONTROL ANALYSIS COURSE
    (Georgia Institute of Technology, 2021-05-05) Inghilleri, Niccolo
    This study aims to assess the impact on skill development of a hands-on experimentation and learning device within the undergraduate aerospace control analysis curriculum at Georgia Institute of Technology. The Transportable Rotorcraft Electronics Control System (TRECS) take-home lab kit was used as a hands-on learning treatment on 37.5% (n=24) of the Fall 2020 Control Analysis course taught by Chance McColl. The other students (n=40) in the course were taken as a control group. A Likert scale skill evaluation survey was performed to determine which skills are developed while using the TRECS. The response distributions and an accompanying Mann Whitney U-test can be found in the results section. On the topic of optimal control algorithms, which are extensively covered in the course lecture material and applied in the TRECS project, Users and Nonusers reported significantly (p=0.10) increased response and Users were found to have significantly (p=0.10) improved beyond Nonusers. Response distributions for topics including PID control, embedded software, and other electronics were not found to change significantly throughout the course, despite the application of the TRECS treatment or the presence of the topic in the course curriculum. The other goal of this research was to propose an improved study which addresses the limitations to this dataset such as small sample sizes, self-reports, sole focus on development of course-specific subject matter and selection bias from the lack of random assignment of the treatment. The recommendations for a future study are aimed to improve trustworthiness, increase transferability, and incorporate multiple verification elements including the development of a new skill assessment that could evaluate students’ application-level understanding of course concepts.
  • Item
    Supporting general aviation pilots during rerouting process due to sudden weather changes
    (Georgia Institute of Technology, 2015-07-24) Tokadli, Guliz
    General aviation pilots need different types of flight information in order to follow events and the changes related to the aircraft environment while flying. However, general aviation cockpits have some limitations as space to install flight displays to provide flight information beyond the basics to the pilot. Additionally, more sophisticated instrumentation is often expensive to install and maintain. With the development of the tablet-based software applications (such as ForeFlight, WingX Pro7 or Garmin Pilot applications for iPad), general aviation pilots have started to use them instead of paper documentation. These software applications provide essential flight information such as weather forecast, aviation charts, flight documents, etc. Unfortunately, the expectations for their capabilities are changing with the increased demand and popularity of these software applications. Therefore, these flight planning software applications are compared to find what is missing and what have not met the expectation of pilots. First, how the software applications support their decision-making process was described and demonstrated to choose the appropriate flight parameters to change flight path while handling with the other cockpit responsibilities. Finally, these design requirements were validated via HITL tests in a part-task flight simulator. The results provided that the suggested design requirements are found highly useful for both novice and expert general aviation pilots. Specifically, novice general aviation pilots might be able to get visualization to compare real-time weather and weather forecast, and then they might gain experience to improve their success for a in-flight re-planning. On the other side, expert pilots might prefer to use this system if they fly an airspace which they are not familiar to weather features of that region.
  • Item
    An IPPD approach providing a modular framework to closing the capability gap and preparing a 21st century workforce
    (Georgia Institute of Technology, 2014-04-09) Zender, Fabian
    The United States are facing a critical workforce challenge, even though current unemployment is around 6.7%, employers find it difficult to find applicants that can satisfy all job requirements. This problem is especially pronounced in the manufacturing sector where a critical skills gap has developed, a problem that is exasperated by workforce demographics. A large number of employees across the various manufacturing sub-disciplines are eligible to retire now or in the near future. This gray tsunami requires swift action as well as long lasting change resulting in a workforce pipeline that can provide Science, Technology, Engineering, and Mathematics (STEM) majors in sufficient quantity and quality to satisfy not only the needs of STEM industries, but also of those companies outside of the STEM sector that hire STEM graduates. The research shown here will identify overt symptoms describing the capability gap, will identify specific skills describing the gap, educational causes why the gaps has not yet been addressed or is difficult to address, and lastly educational remedies that can contribute to closing the capability gap. A significant body of literature focusing on engineering in higher education has been evaluated and findings will be presented here. A multidisciplinary, collaborative capstone program will be described which implements some of the findings from this study in an active learning environment for students working on distributed teams across the US. Preliminary findings regarding the impact of these measures on the quantity of engineers to the US economy will be evaluated.
  • Item
    A computational approach to situation awareness and mental models in aviation
    (Georgia Institute of Technology, 2013-08-06) Mamessier, Sebastien
    Although most modern, highly-computerized flight decks are known to be robust to small disturbances and failures, humans still play a crucial role in advanced decision making in off-nominal situations, and accidents still occur because of poor human-automation interaction. In addition to the physical state of the environment, operators now have to extend their awareness to the state of the automated flight systems. To guarantee the accuracy of this knowledge, humans need to know the dynamics or approximate versions of the dynamics that rule the automation. The operator's situation awareness can decline because of a deficient mental model of the aircraft and an excessive workload. This work describes the creation of a computational human agent model simulating cognitive constructs such as situation awareness and mental models known to capture the symptoms of poor human-automation interaction and provide insight into more comprehensive metrics supporting the validation of automated systems in aviation.
  • Item
    Comparison of model checking and simulation to examine aircraft system behavior
    (Georgia Institute of Technology, 2013-07-15) Gelman, Gabriel E.
    Automation surprises are examples of poor Human-Machine Interaction (HMI) where pilots were surprised by actions of the automation, which lead to dangerous situations during which pilots had to counteract the autopilot. To be able to identify problems that may arise between pilots and automation before implementation, methods are needed that can uncover potentially dangerous HMI early in the design process. In this work, two such methods, simulation and model checking, have been combined and compared to leverage the benefits of both. In the past, model checking has been successful at uncovering known automation surprises. Simulation, on the other hand, has been successful in the aviation domain and human factor issues. To be able to compare these two approaches, this work focused on a common case study involving a known automation surprise. The automation surprise that was examined, is linked to the former Airbus speed protection logic that caused aircraft on approach to change the flight mode, resulting in a sudden climb. The results provided by the model checking with SAL (Symbolic Analysis Laboratory) in a previous work, have been used to provide input for simulation. In this work, this automation surprise was simulated with the simulation platform WMC (Work Models that Compute) and compared to the corresponding results from SAL. By using the case study, this work provides a method to examine system behavior, such as automation surprises, using model checking and simulation in conjunction to leverage the benefits of both.
  • Item
    Adapting navigation and flight conventions to nextgen's en route operations
    (Georgia Institute of Technology, 2011-07-11) Lee, Brian Moon
    In response to the unparalleled growth of demand for air traffic during the past few decades, the Federal Aviation Administration (FAA) launched the Next Generation Air Transportation (NextGen) program to restructure the National Airspace System (NAS). Among the research is the focus on direct, wind optimal routing using geodesic routes and flight operations that do not depend solely on ground based navigation aids (NAVAID) and a fixed airspace structure. While technologies, such as the Global Positioning System (GPS), exist to locate an aircraft at higher degrees of resolution with a larger coverage, the way in which this information is conveyed is long and cumbersome. Therefore, new ways to describe the airspace is desired. The thesis presents the results of an experimental investigation into three alternatives to fix/route and GPS methods. The first method is the Navigation Reference System (NRS) using an absolute grid based strategy that has been recently implemented in limited portions of the United States airspace. The second method, the Military Grid Reference System (MGRS), is also a grid based system, and it is used by NATO, but it has not been applied to the air traffic control context. The third alternative is Point Relation Navigation (PRN), which uses a single point of reference within each Air Route Traffic Center (ARTCC) airspace and acts as a hybrid of coordinate and radial fixes. 21 airline dispatchers from a single major U.S air carrier participated in an online assessment of the five methods above through specific tasks. Results indicate that most participants prefer the fix/route system over the others, followed closely by the PRN method. However, there were varying results across all of the methods in terms of speed and accuracy of completing the tasks. This study incites further interest in strategies to describe aircraft routes operating in a more flexible airspace.
  • Item
    Analysis of Human-System Interaction For Landing Point Redesignation
    (Georgia Institute of Technology, 2009-05-26) Chua, Zarrin K.
    Despite two decades of manned spaceflight development, the recent thrust for increased human exploration places significant demands on current technology. More information is needed in understanding how human control affects mission performance and most importantly, how to design support systems that aid in human-system collaboration. This information on the general human-system relationship is difficult to ascertain due to the limitations of human performance modeling and the breadth of human actions in a particular situation. However, cognitive performance can be modeled in limited, well-defined scenarios of human control and the resulting analysis on these models can provide preliminary information with regard to the human-system relationship. This investigation examines the critical case of lunar Landing Point Redesignation (LPR) as a case study to further knowledge of the human-system relationship and to improve the design of support systems to assist astronauts during this task. To achieve these objectives, both theoretical and experimental practices are used to develop a task execution time model and subsequently inform this model with observations of simulated astronaut behavior. The experimental results have established several major conclusions. First, the method of LPR task execution is not necessarily linear, with tasks performed in parallel or neglected entirely. Second, the time to complete the LPR task and the overall accuracy of the landing site is generally robust to environmental and scenario factors such as number of points of interest, number of identifiable terrain markers, and terrain expectancy. Lastly, the examination of the overall tradespace between the three main criteria of fuel consumption, proximity to points of interest, and safety when comparing human and analogous automated behavior illustrates that humans outperform automation in missions where safety and nearness to points of interest are the main objectives, but perform poorly when fuel is the most critical measure of performance. Improvements to the fidelity of the model can be made by transgressing from a deterministic to probablistic model and incorporating such a model into a six degree-of-freedom trajectory simulator. This paper briefly summarizes recent technological developments for manned spaceflight, reviews previous and current efforts in implementing LPR, examines the experimental setup necessary to test the LPR task modeling, discusses the significance of findings from the experiment, and also comments on the extensibility of the LPR task and experiment results to human Mars spaceflight.