Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 16
  • Item
    Advancing turbulent spray and combustion models for compression ignition engine simulations
    (Georgia Institute of Technology, 2019-02-12) Kim, Sayop
    This thesis seeks to investigate the turbulent mixing influence on spray atomization and combustion processes encountered in compression ignition diesel engines. Despite greater thermal efficiency of diesel engine than spark ignition engine, the nature of stratified air-fuel mixture and non-premixed flame gives rise to unacceptable levels of nitrogen oxides (NOx) and particulate matter (PM), thus the use of diesel engines has often been limited to heavy-duty vehicle and industrial power sources. However, recent advancement in diesel engine combustion strategies, e.g. low temperature combustion (LTC), has demonstrated promising pathways towards improvement in the engine-out pollutants. Therefore, particularly in the effort of computer-aided engine design tasks, such a new engine design concept requires more accurate modeling techniques applicable over a broader range of engine operating conditions than those of conventional engine strategies. In the notion of challenges in new engine operating conditions, this thesis aims to present successful implementation of improvement in numerical modeling techniques in high-pressure spray atomization and resulting turbulent spray flame of interest. Three-dimensional Computational Fluid Dynamics (CFD) in in-cylinder turbu- lent combustion is considered an integral part of engine design progress, but rather a cost-prohibitive to apply over a broad range of engine relevant conditions. In spite of successful use of existing spray atomization modeling, prior researchers have pointed out some degree of failure in LTC targeted injection strategies. Furthermore, finite rate and strong nonlinearity of chemistry influenced by local turbulent mixing still re- main in challenges to account for in cost-efficient CFD analysis. In this context, a new attempt of hybrid spray primary breakup modeling is presented and demonstrated in successful application aimed at LTC technique. In addition, the Representative Interactive Flamelets (RIF) model with aid of multi-flamelets approach is extensively assessed in terms of predictive capability against classical combustion model. The combustion model employed in this study are fully examined in the general diesel combustion metric, e.g., ignition delay and flame lift-off length as well as newly sug- gested test metric, combustion recession. The combustion recession has been recently idenfied, but still remain largely unknown. Since the governing physics of this phenomenon is characterized by turbulent mixing coupled with finite rate chemistry, this can be considered as a relevant test metric for turbulent combustion models. In addition, very recent experimental studies have introduced a new non-sooting diesel combustion technique by manipulating direct injection method. The ducted fuel injection (DFI) has thus been demonstrated with its potential of low soot emissions. Knowing that the duct equipped ahead of injector nozzle was identifed to enhance turbulent mixing, investigations of DFI combustion may prove the effectiveness of turbulece-chemistry interaction modeling. This thesis presents comprehensive under- standings of aformentioned diesel combustion techniques in terms of several important physics keywords, e.g., turbulent mixing and detailed chemistry.
  • Item
    Optimized communications protocol for low earth orbit cubesat
    (Georgia Institute of Technology, 2018-05) Desai, Baijun
    The purpose of this document is to describe and analyze the implementation of a communications protocol to transfer data between a CubeSat and ground station. The mission of the CubeSat is to track debris in low earth orbit (LEO). Data transfers to and from the satellite include images, telemetry, commands, and processed data. The communications channel operates on a half-duplex connection with a single linearly polarized half-wave UHF dipole attached to the CubeSat, and a circularly polarized Yagi-Uda antenna on the ground station. Data will pass through a Software Defined Radio (SDR) and on the ground station over packet radio. The challenges faced in designing the protocol include high packet loss, short and infrequent access times, high delay times, variable signal strength, and limited power. The designed protocol will be implemented and tested on the CubeSat. It is evaluated against other existing communications protocols for performance.
  • Item
    Experimental study of spray-formation processes in twin-fluid jet-in-crossflow at jet-engine operating conditions
    (Georgia Institute of Technology, 2017-01-05) Tan, Zu Puayen
    The jet-in-crossflow (JICF) fuel-injection technique is widely applied in modern jet-engine fuel-air mixers to provide rapid fuel atomization and mixing. However, the “Classical” JICF places large amounts of fuel into the initial jet/spray’s recirculation zone and the wall boundary-layer, both of which can risk flashback and fuel-coking on the wall, particularly for next-generation jet-engines that will operate at increasingly higher pressures and temperatures. Twin-Fluid (TF) JICF, where streams of air are co-injected with the fuel jet into the crossflow, is being considered as a way to mitigate the Classical-JICF’s shortcomings. However, the TF-JICF is a nascent fuel-injection technique that is not well understood, especially at the high operating pressures of jet-engines. This dissertation reports an experimental investigation of TF-JICF where liquid Jet-A fuel was co-injected with pressurized nitrogen into a crossflow of air. The developed fuel sprays were characterized using shadowgraphy. The fuel-to-crossflow momentum-flux ratios were varied from J=5-40, the air-nozzles pressure-drops were varied from dP=0-150% of crossflow pressure, and the crossflow Weber numbers were varied from Wecf=175-1050. These operating conditions allowed us to obtain a dataset that is both comparable with near-atmospheric studies of TF-JICF in the literature and applicable to jet-engines. The results show that TF-JICF can be classified into four spray-formation regimes (i.e., Classical-JICF, Air-Assist JICF, Airblast JICF and Airblast Spray-in-Crossflow), each containing a unique set of spray characteristics and mechanisms. In the Air-Assist regime that spans dP≈3-13%, the injected air formed a protective air-sheath around the initial fuel jet, which inhibited the development of Rayleigh-Taylor waves and surface-shearing (i.e., disturbances created by the crossflow), thus reducing the near-wall fuel concentrations. Applying higher levels of dP transitioned the spray into the Airblast JICF regime, where the intensified fuel-air impingement and shearing generated new disturbances on the jet. These generally caused the near-wall regions to become repopulated with fuel droplets (i.e., counter-productive towards mitigating flashback and wall-coking). When dP was higher than 100%, the jet became completely atomized by air prior to encountering the crossflow, producing an “Airblast Spray-in-Crossflow”. The resulting spray-plume’s penetration became related to the combination of the fuel and air’s momentum-fluxes, where increasing dP caused increasing separation between the spray-plume and test-channel wall. This reduces the near-wall fuel concentrations and is beneficial towards fuel-air mixer design, although the required levels of dP for this regime is likely too high for practical jet-engine operation.
  • Item
    Numerical investigation on the use of multi-element blades in vertical-axis wind turbines
    (Georgia Institute of Technology, 2015-01-12) Bah, Elhadji Alpha Amadou
    The interest in sustainable forms of energy is being driven by the anticipated scarcity of traditional fossil fuels over the coming decades. There is also a growing concern about the effects of fossil fuel emissions on human health and the environment. Many sources of renewable energy are being researched and implemented for power production. In particular, wind power generation by horizontal- and vertical-axis wind turbines is very popular. Vertical-axis wind turbines (VAWTs) have a relative construction simplicity compared to horizontal-axis wind turbines (HAWTs). However, VAWTs present specific challenges that may hinder their performance. For instance, they are strongly affected by dynamic stall. A significant part of the kinetic energy contained in the oncoming wind is lost in swirl and vortices. As a result, VAWTs have lower power production compared to HAWTs. First, the present work is aimed at the study of the aerodynamics of straight-bladed VAWTs (SB-VAWTs). Empirical calculations are conducted in a preliminary work. Then a two-dimensional double multiple streamtube (DMST) approach supported by a two-dimensional numerical study is implemented. The dynamic stall and aerodynamic performance of the rotor are investigated. A VAWT-fitted dynamic stall model is implemented. Computational fluid dynamics (CFD) simulations are conducted to serve as reference for the DMST calculations. This three-pronged approach allows us to efficiently explore multiple configurations. The dynamic stall phenomenon is identified as a primary cause of performance loss. The results in this section validate the DMST model as a good replacement for CFD analysis in early phase design provided that a good dynamic stall model is used. After having identify the primary cause of performance loss, the goal is to investigate the use to dual-element blades for alleviating the effect of dynamic stall, thereby improving the performance of the rotor. The desirable airfoil characteristics are defined and a parametric analysis conducted. In the present study the parameters consists of the size of the blade elements, the space between them, and their relative orientation. The performance of the rotor is calculated and compared to the baseline. The results highlight the preeminence of the two-element configuration over the single-element provided that the adequate parametric study is conducted beforehand. A performance enhancement is obtained over a large range of tip speed ratios. The starting characteristics and the operation stability are also improved. Finally, an economic analysis is conducted to determine the cost of energy and thus the financial viability of such a project. The Great Coast of Senegal is selected as site of operation. The energy need and sources of this region are presented along with its wind energy potential. The cost evaluation shows the economic viability by comparing the cost of energy to the current energy market prices.
  • Item
    The role of radicals supplied directly and indirectly on ignition
    (Georgia Institute of Technology, 2014-08-19) Kim, Jaecheol
    The ignition process is a critical consideration for combustion devices. External energy transfer to the combustor is required for ignition in common combustion systems. There are many ways to deposit energy into the flow but a standard method is a spark discharge because it is simple, compact, and reliable. Sparks can be categorized as either inductive or capacitive sparks that use a coil or an electrical resonance circuit with capacitor, respectively, to amplify the voltage. The creation of a successful ignition event depends on the spark energy deposited into the flow, the initial composition, pressure, temperature, turbulence level of flow etc. The deposited energy by the spark into the flow is critical for estimation of initial energy available for ignition of the mixture. Therefore, the electrical characteristics of the sparks were investigated under various flow conditions. Then measurements of deposited energy into the flow were conducted using a very accurate experimental procedure that was developed in this research. The results showed considerable electric energy losses to the electrodes for the relatively long, inductive sparks. However, the short, capacitive spark deposits electric energy into the flow with minimal loss (above 90% deposition efficiency). In addition, the characteristics of inductive spark are affected by flow velocity and by the existence of a flame. However, variations in the flow conditions do not affect the characteristics of the capacitive spark such as voltage-current time trace and energy deposition efficiency. Two ignition systems using above mentioned two spark types were developed. First, the capacitive spark energy was directly deposited into the premixed flow. Most researchers have not concentrated on the early initiation process but on the flame growth. Therefore, the generated kernel formed by the energy deposition was observed and characterized using optical methods, immediately following the spark. In addition, the mixing effect for this ignition kernel with surrounding gas was simulated using a numerical method. Based on the time trace of the OH* chemiluminescence, the reaction starts with the discharge and it is continuous until combustion begins. This means that in the presence of a high density spark in premixed flow, there exists no traditional delay as defined by other researchers for auto ignition. A simple Radical Jet Generator (RJG) was developed that is able to ignite and stabilize a flame in a high-speed flow. The inductive spark initiates the combustion in the RJG chamber. The RJG then injects the partially-burned products carrying large amounts of heat and radicals into a rapidly moving flammable main stream. Then it ignites and stabilizes a flame. The RJG requires low levels of electrical power as long as the flow velocity is relatively low since most of the radicals are produced by the incomplete combustion in its chamber. The importance of radicals was analyzed by RJG experiments and numerical methods. The reaction zone for RJG using a rich mixture was located both inside and outside of the RJG chamber. Therefore, the RJG using a rich mixture performed better in the ignition and stabilization of combustion in the main flow. According to an analysis using the CHEMKIM simulation software combined with the San Diego chemical mechanism, the RJG jet resulting from a rich mixture contains more radicals and intermediates than that produced by a lean mixture for the same sensible enthalpy. In addition, the burned gas contains less radicals and intermediates than the partially burned gas. If the RJG is operating with a high speed main flow, the flow rate through the RJG chamber must be increased to allow the radical jet to penetrate well into the rapid flow due to their higher injection velocity. Unfortunately, this leads to unsteady combustion in the RJG, which results in the pulsation of the radical jet. This reduces the number of radicals injected into the main flow. To investigate this operating condition, special attention was focused on four possible factors: unburned reactant pockets caused by motion of the spark channel, spark frequency, flame propagation speed and ignition delay. It was shown that the unsteadiness is affected by the flame speed and ignition delay because the frequency of pulsation in the chamber is highly dependent on the equivalence ratio. In addition, the interaction between the RJG operation and the combustion dynamics in the main combustor was documented. The acoustic pressure oscillations in the main combustor were suppressed when the RJG jet was turned on because the reaction region is relocated by the operation of the RJG.
  • Item
    Simulation of magnetohydrodynamics turbulence with application to plasma-assisted supersonic combustion
    (Georgia Institute of Technology, 2009-01-14) Miki, Kenji
    The main objective of this thesis is to develop a comprehensive model with the capability of modeling both a high Reynolds number and high magnetic Reynolds number turbulent flow for application to supersonic combustor. The development of this model can be divided into three categories: one, the development of a self-consistent MHD numerical model capable of modeling magnetic turbulence in high magnetic Reynolds number applications. Second, the development of a gas discharge model which models the interaction of externally applied fields in conductive medium. Third, the development of models necessary for studying supersonic combustion applications with plasma-assistance such the extension of chemical kinetics models to extremely high temperature and non-equilibrium phenomenon.
  • Item
    Investigation of the impact of turbine blade geometry on near-field microwave blade tip time of arrival measurements
    (Georgia Institute of Technology, 2008-10-14) Zimmer, Aline Katharina
    This study investigates the manifestation of geometric features of turbine blades in signatures of non-optical time of arrival (ToA) probes. The approach enables an evaluation of the various signal characteristics used for defining ToA for a range of airfoil geometries and provides knowledge about additional waveform characteristics. The objective of this research is to increase the accuracy of microwave ToA probes by gaining a better understanding of the microwave signals in five steps. Firstly, ToA definitions used in the past are compared. Considering accuracy, computational effort, and versatility, the constant fraction crossing definition is found to be the most accurate. Secondly, an experimental apparatus capable of measuring airfoil ToA with microwave probes and optical probes as a reference is designed and built. As a third step, a catalog of 16 turbine blade geometries is developed. Fourthly, the signatures of these turbine blades are acquired using both the optical and the microwave probes. Finally, the impact of the geometric effects on the signatures is evaluated. The quality of the microwave results is found to be highly dependent on the polarization of the microwaves. Analysis of the time domain signal shows that decreasing the blade width, increasing the chord angle, or incorporating a blade tip pocket or a varying cross-section leads to a decrease in the amplitude of the peak caused by the blade. Increasing the blade width and incorporating a chord angle leads to an increase in peak width. A frequency domain analysis is conducted on the microwave signals and verified using a synthetic signal. This analysis confirms the findings from the time domain analysis. The time domain analysis of the laser measurements shows that the spatial resolution of the laser is much higher than that of the microwave sensor. Consequently, the signal acquired with the optical setup provides a good means of defining the blade ToA. The knowledge gained in this study about the sensor and its interaction with passing blade tips of varying geometry can be used to enhance the understanding of microwave ToA measurements. This knowledge provides further insight into airfoil and engine health.
  • Item
    An investigation into an asymmetric fuel nozzle in a GE CFM56-5B burner
    (Georgia Institute of Technology, 2003-08) Lamping, Logan Joseph
  • Item
    Development and investigation of a small, high aspect ratio, two-stroke engine
    (Georgia Institute of Technology, 2002-08) Disseau, Mael Leo David Soliman
  • Item
    Study of the heat transfer mechanism from a submerged pulse combustor to a fluidized bed
    (Georgia Institute of Technology, 2000-05) Jeong, Hae-won