Organizational Unit:
Aerospace Design Group

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Flight-Test Results of Autonomous Airplane Transitions Between Steady-Level and Hovering Flight
    (Georgia Institute of Technology, 2008-03) Johnson, Eric N. ; Wu, Allen D. ; Neidhoefer, James C. ; Kannan, Suresh K. ; Turbe, Michael A.
    Linear systems can be used to adequately model and control an aircraft in either ideal steady-level flight or in ideal hovering flight. However, constructing a single unified system capable of adequately modeling or controlling an airplane in steady-level flight and in hovering flight, as well as during the highly nonlinear transitions between the two, requires the use of more complex systems, such as scheduled-linear, nonlinear, or stable adaptive systems. This paper discusses the use of dynamic inversion with real-time neural network adaptation as a means to provide a single adaptive controller capable of controlling a fixed-wing unmanned aircraft system in all three flight phases: steady-level flight, hovering flight, and the transitions between them. Having a single controller that can achieve and transition between steady-level and hovering flight allows utilization of the entire low-speed flight envelope, even beyond stall conditions. This method is applied to the GTEdge, an eight-foot wingspan, fixed-wing unmanned aircraft system that has been fully instrumented for autonomous flight. This paper presents data from actual flight-test experiments in which the airplane transitions from high-speed, steady-level flight into a hovering condition and then back again.
  • Item
    Vision-Aided Inertial Navigation for Flight Control
    (Georgia Institute of Technology, 2005-09) Wu, Allen D. ; Johnson, Eric N. ; Proctor, Alison A.
    Many onboard navigation systems use the Global Positioning System to bound the errors that result from integrating inertial sensors over time. Global Positioning System information, however, is not always accessible since it relies on external satellite signals. To this end, a vision sensor is explored as an alternative for inertial navigation in the context of an Extended Kalman Filter used in the closed-loop control of an unmanned aerial vehicle. The filter employs an onboard image processor that uses camera images to provide information about the size and position of a known target, thereby allowing the flight computer to derive the target's pose. Assuming that the position and orientation of the target are known a priori, vehicle position and attitude can be determined from the fusion of this information with inertial and heading measurements. Simulation and flight test results verify filter performance in the closed-loop control of an unmanned rotorcraft.