Organizational Unit:
Aerospace Design Group

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Vision-Aided Inertial Navigation for Flight Control
    (Georgia Institute of Technology, 2005-09) Wu, Allen D. ; Johnson, Eric N. ; Proctor, Alison A.
    Many onboard navigation systems use the Global Positioning System to bound the errors that result from integrating inertial sensors over time. Global Positioning System information, however, is not always accessible since it relies on external satellite signals. To this end, a vision sensor is explored as an alternative for inertial navigation in the context of an Extended Kalman Filter used in the closed-loop control of an unmanned aerial vehicle. The filter employs an onboard image processor that uses camera images to provide information about the size and position of a known target, thereby allowing the flight computer to derive the target's pose. Assuming that the position and orientation of the target are known a priori, vehicle position and attitude can be determined from the fusion of this information with inertial and heading measurements. Simulation and flight test results verify filter performance in the closed-loop control of an unmanned rotorcraft.
  • Item
    Estimation and Guidance Strategies for Vision-based Target Tracking
    (Georgia Institute of Technology, 2005-06) Calise, Anthony J. ; Johnson, Eric N. ; Sattigeri, Ramachandra J. ; Watanabe, Yoko ; Madyastha, Venkatesh
    This paper discusses estimation and guidance strategies for vision-based target tracking. Specific applications include formation control of multiple unmanned aerial vehicles (UAVs) and air-to-air refueling. We assume that no information is communicated between the aircraft, and only passive 2-D vision information is available to maintain formation. To improve the robustness of the estimation process with respect to unknown target aircraft acceleration, the nonlinear estimator (EKF) is augmented with an adaptive neural network (NN). The guidance strategy involves augmenting the inverting solution of nonlinear line-of-sight (LOS) range kinematics with the output of an adaptive NN to compensate for target aircraft LOS velocity. Simulation results are presented that illustrate the various approaches.
  • Item
    Adaptive Trajectory Control for Autonomous Helicopters
    (Georgia Institute of Technology, 2005) Johnson, Eric N. ; Kannan, Suresh K.
    For autonomous helicopter flight, it is common to separate the flight control problem into an inner loop that controls attitude and an outer loop that controls the translational trajectory of the helicopter. In previous work, dynamic inversion and neural-network-based adaptation was used to increase performance of the attitude control system and the method of pseudocontrol hedging (PCH) was used to protect the adaptation process from actuator limits and dynamics. Adaptation to uncertainty in the attitude, as well as the translational dynamics, is introduced, thus, minimizing the effects of model error in all six degrees of freedom and leading to more accurate position tracking. The PCH method is used in a novel way that enables adaptation to occur in the outer loop without interacting with the attitude dynamics. A pole-placement approach is used that alleviates timescale separation requirements, allowing the outer-loop bandwidth to be closer to that of the inner loop, thus, increasing position tracking performance. A poor model of the attitude dynamics and a basic kinematics model is shown to be sufficient for accurate position tracking. The theory and implementation of such an approach, with a summary of flight-test results, are described.
  • Item
    Visual Search Automation for Unmanned Aerial Vehicles
    (Georgia Institute of Technology, 2005-01) Johnson, Eric N. ; Proctor, Alison A. ; Ha, Jin-Cheol ; Tannenbaum, Allen R.
    This paper describes the design, development, and testing of an Unmanned Aerial Vehicle (UAV) with automated capabilities: searching a prescribed area, identifying a specific building within that area based on a small sign located on one wall, and then identifying an opening into that building. This includes a description of the automated search system along with simulation and flight test results. Results include successful evaluation at the McKenna Military Operations in Urban Terrain flight test site.