Organizational Unit:
Aerospace Design Group

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 1 of 1
  • Item
    Flight-Test Results of Autonomous Airplane Transitions Between Steady-Level and Hovering Flight
    (Georgia Institute of Technology, 2008-03) Johnson, Eric N. ; Wu, Allen D. ; Neidhoefer, James C. ; Kannan, Suresh K. ; Turbe, Michael A.
    Linear systems can be used to adequately model and control an aircraft in either ideal steady-level flight or in ideal hovering flight. However, constructing a single unified system capable of adequately modeling or controlling an airplane in steady-level flight and in hovering flight, as well as during the highly nonlinear transitions between the two, requires the use of more complex systems, such as scheduled-linear, nonlinear, or stable adaptive systems. This paper discusses the use of dynamic inversion with real-time neural network adaptation as a means to provide a single adaptive controller capable of controlling a fixed-wing unmanned aircraft system in all three flight phases: steady-level flight, hovering flight, and the transitions between them. Having a single controller that can achieve and transition between steady-level and hovering flight allows utilization of the entire low-speed flight envelope, even beyond stall conditions. This method is applied to the GTEdge, an eight-foot wingspan, fixed-wing unmanned aircraft system that has been fully instrumented for autonomous flight. This paper presents data from actual flight-test experiments in which the airplane transitions from high-speed, steady-level flight into a hovering condition and then back again.