Organizational Unit:
University Center of Excellence for Photovoltaics

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    High Efficiency Screen-Printed Solar Cells on Textured Mono-Crystalline Silicon
    (Georgia Institute of Technology, 2005-10) Rohatgi, Ajeet ; Ebong, Abasifreke ; Hilali, Mohamed M. ; Meemongkolkiat, Vichai ; Rounsaville, Brian ; Ristow, Alan
    In this paper we report on high efficiency screen-printed 4 cm(2) solar cells fabricated on randomly textured float zone, magnetic Czochralski (MCz) and Ga-doped Cz silicon. A simple process involving POCl(3) emitters, low frequency PECVD silicon nitride deposition, Al back contact print, Ag front grid print followed by co-firing of the contacts produced efficiencies of 19.0% on textured float zone, 18.2% on MCz and 17.7% on Ga-doped Cz. A combination of high sheet resistance emitter (~100 Ω-/sq.) and the surface texturing resulted in short circuit current density of 37.3 mA/cm(2) for 0.6 Ω-cm float zone cell, 38.2 mA/cm(2) for 4.8 Ω-cm MCz cell and 37.4 mA/cm(2) for 1.5 Ω-cm Ga-doped Cz cell. Open circuit voltages were consistent with the base resistivity of the three materials. However, FF was highest for float zone (0.784) followed by MCz (0.759) and Ga-doped Cz (0.754). Model calculations performed using PC1D showed that, once the lifetime exceeds 200 μs for this cell design, the efficiency no longer has a strong dependence on the bulk lifetime. Instead, the performance is limited by the cell design including contacts, base resistivity, doping profiles, and front and back surface recombination velocities. Detailed analysis is performed to explain the high performance of these screen-printed cells and guidelines are provided for ≥20% efficient screen-printed cells.
  • Item
    High Efficiency Screen-Printed Planar Solar Cells on Single Crystalline Silicon Materials
    (Georgia Institute of Technology, 2005-01) Ebong, Abasifreke ; Hilali, Mohamed M. ; Upadhyaya, V. ; Rounsaville, Brian ; Ebong, I. ; Rohatgi, Ajeet
    In this paper we report on the fabrication, characterization and analysis of high efficiency planar screen-printed solar cells with high sheet resistance emitter ~ 100 Ω/square. Three single crystalline materials were used in this study including; boron doped magnetically stabilized Cz (MCz), gallium-doped Cz (GaCz) and float zone (FZ). For these three materials, a wide range of resistivities was investigated including Fz - 0.6-4.1 Ω-cm, MCz - 1.2-5.3 Ω-cm and Ga-Cz 2.6-33 Ω-cm. Energy conversion efficiencies of 17.7% were achieved on both Fz (0.6-Ω-cm) and MCz (1.2-Ω-cm) while 16.9% was obtained on GaCz silicon material. The 17.7% efficiency achieved on these two materials is the highest energy conversion efficiency reported on a planar screen-printed silicon solar cell. These results demonstrate the importance of high sheet resistance emitter in achieving high efficiency manufacturable solar cells.