Organizational Unit:
Rehabilitation Engineering and Applied Research Lab (REAR Lab)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    An Exploratory Analysis of The Role of Adipose Characteristics in Fulltime Wheelchair Users’ Pressure Injury History - Supplementary Data
    (Georgia Institute of Technology, 2021) Sonenblum, Sharon Eve ; Measel, Megan ; Sprigle, Stephen ; Greenhalgh, John ; Cathcart, John McKay
    The goals of this study were 1) to identify the relationship between adipose (subcutaneous and intramuscular) characteristics and pressure injury (PrI) history in wheelchair users, and 2) to identify subject characteristics, including Biomechanical Risk, that are related to adipose characteristics. Data in the supplement is associated with 43 full-time wheelchair users with and without a history of pelvic pressure injuries. Their buttocks were scanned in a seated posture in a FONAR UPRIGHT® MRI. Intramuscular adipose (the relative difference in intensity between adipose and gluteus maximus) and the subcutaneous adipose characteristics (the relative difference in intensity between subcutaneous adipose under and surrounding the ischium) were compared to pressure injury history and subject characteristics. Participants with a history of PrIs had different subcutaneous fat (subQF) characteristics than participants without a history of PrIs. Specifically, they had significantly darker adipose under the ischium than surrounding the ischium than participants without a history of PrIs. On the other hand, only when individuals with complete fat infiltration (n=7) were excluded, did individuals with PrI history have more fat infiltration than those without a PrI history. Presence of spasms and fewer years using a wheelchair were associated with leaner muscle. The results of the study suggest the hypothesis that changes in adipose tissue under the ischial tuberosity (presenting as darker SubQF) are associated with increased biomechanical risk for pressure injury. Further investigation of this hypothesis, as well as the role of intramuscular fat infiltration in PrI development may help our understanding of PrI aetiology. It may also lead to clinically-useful diagnostic techniques that can identify changes in adipose and biomechanical risk to inform early preventative interventions.
  • Item
    Buttock tissue response to loading in men with SCI dataset
    (Georgia Institute of Technology, 2018-01-26) Sonenblum, Sharon Eve ; Sprigle, Stephen
    Objective/Background: Despite the fact that most people with a spinal cord injury who use a wheelchair for mobility are considered at-risk for pressure ulcer (PrU) development, there still exists a spectrum of risk amongst this group. Efforts to differentiate risk level would benefit from clinical tools that can measure or predict the buttocks response to loading. Therefore, the goal of this study was to identify how tissue compliance and blood flow were impacted by clinically-measurable risk factors in young men with SCI. Methods: Blood flow at the ischial tuberosity was measured using laser Doppler flowmetry while the seated buttock was unloaded, and loaded at lower (40-60 mmHg) and high (>200 mmHg) loads. Tissue compliance of the buttock was measured using the Myotonometer while subject were lifted in a Guldmann Net. Results: Across 28 participants, blood flow was significantly reduced at high loads, while no consistent, significant changes were found at lower loads. At 40-60 mmHg, blood flow decreased in participants with a pressure ulcer history and lower BMI, but stayed the same or increased in most other participants. The buttock displaced an average of 9.3 mm (2.7 mm) at 4.2 N, which represented 82% (7%) of maximum displacement. BMI was related to the amount of buttock tissue displacement while smoking status explained some of the variation in the percent of max displacement. Conclusion: Wide variability in tissue compliance and blood flow responses across a relatively homogeneous population indicate that differences in biomechanical risk may provide an explanation for the spectrum of PrU risk among persons with SCI.