Organizational Unit:
School of Materials Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 126
  • Item
    Biomimetic and synthetic syntheses of nanostructured electrode materials
    (Georgia Institute of Technology, 2012-12) Berrigan, John Daniel
    The scalable syntheses of functional, porous nanostructures with tunable three-dimensional morphologies is a significant challenge with potential applications in chemical, electrical, electrochemical, optical, photochemical, and biochemical devices. As a result, several bio-enabled and synthetic approaches are explored in this work (with an emphasis on peptide-enabled deposition) for the generation of aligned nanotubes of nanostructured titania for application as electrodes in dye-sensitized solar cells and biofuel cells. As part of this work, peptide-enabled deposition was used to deposit conformal titania coatings onto porous anodic alumina templates under ambient conditions and near-neutral pH to generate aligned, porous-wall titania nanotube arrays that can be integrated into dye-sensitized solar cells where the arrays displayed improved functional dye loading compared to sol-gel-derived nanotubes. A detailed comparison between synthetic and bioorganic polyamines with respect to titania film properties deposition rate provided valuable information for future titania coating experimental design given specific applications. The development of template-based approaches to single-wall titania nanotube arrays led to the development of a new synthetic method to create aligned, multi-walled titania nanotube arrays. Lastly, peptide-enabled deposition methods were extended beyond inorganic mineral and used for enzyme immobilization by cross-linking the peptide with the multicopper oxidase laccase. Peptide-laccase hybrid enzyme coatings improved both the amount of enzyme adsorbed onto carbon nanotube “buckypaper” and allowed the enzyme to retain more activity upon immobilization onto the surface.
  • Item
    Tensile testing and stabilization/carbonization studies of polyacrylonitrile/carbon nanotube composite fibers
    (Georgia Institute of Technology, 2012-11-14) Lyons, Kevin Mark
    This study focuses on the processing, structure and properties of polyacrylonitrile (PAN)/ carbon nanotube (CNT) composite carbon fibers. Small diameter PAN/CNT based carbon fibers have been processed using sheath-core and islands-in-a-sea (INS) fiber spinning technology. These methods resulted in carbon fibers with diameters of ~3.5 μm and ~1 μm (for sheath-core and INS respectively). Poly (methyl methacrylate) has been used as the sheath or the sea component, which has been removed prior to carbonization. These fibers have been stabilized and carbonized using a batch process. The effect of stabilization has been characterized by Fourier Transform Infrared Spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). A non-isothermal extent of cyclization (Mcyc) from the DSC kinetics study was developed in order to obtain an unbiased method for determining the optimal stabilization condition. The results of Mcyc were found to be in good agreement with the experimental FTIR and WAXD observations. The carbon fiber fracture surfaces have been examined using SEM. Various test parameters that affect the tensile properties of the precursor fiber (both PAN and PAN/CNT), as well as carbon fiber have been studied. In an attempt to validate single filament tests, fiber tow testing has also been done using standard test methods. Batch processed carbon fibers obtained via sheath-core geometry exhibited tensile strengths as high as 6.5 GPa, while fibers processed by islands-in-a-sea geometry exhibited strength values as high as 7.7 GPa.
  • Item
    Stimuli-responsive hybrid nanomaterials: spatial and temporal control of multifunctional properties
    (Georgia Institute of Technology, 2012-11-13) Gupta, Maneesh Kumar
    Recently, technological advancement and the promise of next-generation devices have created an overwhelming push for the continued miniaturization of active systems to the micro- and nanometer scale. In this regime, traditional mechanical systems are largely inaccessible and as a result new active or stimuli-responsive materials are required. The work presented in this dissertation provides an understanding of the responsive nature of polymer and biopolymer interfaces especially in contact with metal nanoparticles. This understanding was utilized in conjunction with top-down template-based and self-assembly fabrication strategies to create hybrid protein based films and active polymer-metal hybrids that exhibit large and well-defined modulation of mechanical and optical properties. These materials processing developments represent advancement in the current state of the art specifically in three major areas: 1. template-based top-down control of protein chain conformation, 2. high-throughput synthesis and assembly of strongly coupled plasmonic nanoparticles with modulated optical properties (both near- and far-field), 3. field-assisted assembly of highly mobile and non-close packed magnetic nanorods with capabilities for rapid actuation.
  • Item
    Determination via computational modeling of the structure-properties relationships in intercalated polymer:fullerene blends found in bulk-heterojunction solar cells
    (Georgia Institute of Technology, 2012-11-13) Cho, Eunkyung
    In bulk-heterojunction solar cells, device performance is influenced by both the intrinsic properties of the individual components - typically conjugated polymers and fullerene derivatives - and how they assemble and interact at their interface. The ability of fullerene to intercalate within the side-chains of a conjugated polymer can significantly affect the microstructure and overall device performance. Here, a series of computational chemistry approaches are applied to investigate the relationships between structure and property in intercalated polymer:fullerene blend. Using a combination of molecular mechanics (MM) calculation and simulations of 2D grazing incidence X-ray diffraction (GIXD) patterns, we have determined the molecular packing configuration of poly (2,5-bis (3-tetradecyl thiophene-2-yl) thieno[3,2-b]thiophene) (PBTTT-C₁₄) and a blend of PBTTT-C₁₄ and [6,6]-phenyl-C₇₁-butyric acid methyl ester (PC₇₁BM). Based on the confirmed packing structures, the electronic properties and morphological disorder were examined using density functional theory (DFT) and molecular dynamics (MD) calculations, respectively; we also investigated the intermolecular interaction energies behind the structure formation. Finally, we examined the vibrational, redox, and optical properties of the pristine polymer and a series of fullerene derivatives to understand the characteristic modes related to the various charged states of the systems.
  • Item
    Investigation of electrode surfaces in solid oxide fuel cells using Raman mapping and enhanced spectroscopy techniques
    (Georgia Institute of Technology, 2012-11-13) Blinn, Kevin Scott
    Solid oxide fuel cells (SOFCs) represent a much cleaner and more efficient method for harnessing fossil fuel energy than conventional combustion; however, the challenge with making SOFCs mainstream lies in reducing operating costs and staving off their rapid degradation. High cathode polarization remains a bottleneck for lowering operation temperature. On the anode side, supplying SOFCs with hydrocarbon-based fuels poses many problems for systems using state-of-the-art material specifications such as composites of Ni and yttria-stabilized zirconia (YSZ). Various novel materials and surface modifications have been found to mitigate these problems, but more information towards a more profound understanding the role of these materials is desired. In this work, advanced Raman spectroscopic techniques were applied toward this end. Raman spectroscopy was used for the tracking of the evolution of water, carbon, sulfur, and oxygen species as well as new phases at SOFC electrode surfaces following or during exposure to various temperatures, atmospheres, and electrochemical stimuli. This information, coupled with performance data and other characterizations, would help to clarify the mechanisms of anode contamination reactions and oxygen reduction reactions. Knowledge gained from this work would also help to connect electrode modifications with performance enhancement and poisoning tolerance, offering insights vital to design of better electrodes. In addition, lack of adequate Raman signal from certain species, which is one of Raman spectroscopy’s limitations, was addressed. Surface enhanced Raman scattering (SERS) techniques were used in both in situ and ex situ analyses to increase signal yield from gas species and phases that are found only in trace amounts on electrode surfaces. Finally, a more practical thrust of this work was the application of this study methodology and the knowledge gained from it to cells with NASA's bielectrode supported cell (BSC) architecture. These types of cells also offer great prospects for superior specific power density due to their low weight. Ultimately, the goal of this thrust was progress towards achieving optimum performance of SOFCs operating under hydrocarbon fuels.
  • Item
    Carbon nanotubes as structural templates within poly(vinyl alcohol) composite fibers
    (Georgia Institute of Technology, 2012-11-12) Ford, Ericka N. J.
    Because the gel-spinning process has the potential to yield fibers of high strength and high modulus, this technique was employed to process continuous filaments of PVA/CNT, having CNTs at ¡Ü1 weight percent of polymer. A gel aging technique was employed with the goal of increasing the draw ratio for composite fibers and for promoting the development of crystalline PVA. Since residual solvent can lower the mechanical properties of drawn fibers, solvent phases of water and dimethyl sulfoxide (DMSO) within the drawn fibers were also characterized. As embedded SWNTs were uniaxially aligned along the drawn fiber axis, they were found to induce preferential alignment in the PVA side groups as well as for the residual solvent. This was attributed to charge transfer between SWNT and the respective functional groups. This orientation behavior has been characterized using Raman spectroscopy and infra-red dichroism. The behaviors of gel crystallization and solvent freezing within PVA/CNT dispersions were studied using thermal analysis and rheology. Carbon nanotubes were found to nucleate PVA crystallization in the gel state. PVA/CNT gel aging behavior was characterized by structural, thermal, and mechanical, and dynamic mechanical means. Gel aging was shown to increase the draw ratio of PVA/CNT fibers, and the development of the higher temperature melting peak was attributed to the draw induced ordering of PVA along CNTs. The scanning electron micrographs of fractured PVA/CNT fibers showed fibrils having an average diameter of about 22 nm. The storage modulus of aged gel was a function of solvent diffusion, which changed with aging time. CNTs were shown to have stabilized the gel network, as characterized by the dynamic mechanical properties, and to provide nucleation sites for the ordering of PVA chains, as characterized by WAXD.
  • Item
    Nanocomposite glass-ceramic scintillators for radiation spectroscopy
    (Georgia Institute of Technology, 2012-10-24) Barta, Meredith Brooke
    In recent years, the United States Departments of Homeland Security (DHS) and Customs and Border Protection (CBP) have been charged with the task of scanning every cargo container crossing domestic borders for illicit radioactive material. This is accomplished by using gamma-ray detection systems capable of discriminating between non-threatening radioisotopes, such as Cs-137, which is often used in nuclear medicine, and fissile material, such as U-238, that can be used to make nuclear weapons or "dirty" bombs. Scintillation detector systems, specifically thallium-doped sodium iodide (NaI(Tl)) single crystals, are by far the most popular choice for this purpose because they are inexpensive relative to other types of detectors, but are still able to identify isotopes with reasonable accuracy. However, increased demand for these systems has served as a catalyst for the research and development of new scintillator materials with potential to surpass NaI(Tl). The focus of a majority of recent scintillator materials research has centered on sintered transparent ceramics, phosphor-doped organic matrices, and the development of novel single crystal compositions. Some of the most promising new materials are glass-ceramic nanocomposites. By precipitating a dense array of nano-scale scintillating crystals rather than growing a single monolith, novel compositions such as LaBr₃(Ce) may be fabricated to useful sizes, and their potential to supersede the energy resolution of NaI(Tl) can be fully explored. Also, because glass-ceramic synthesis begins by casting a homogeneous glass melt, a broad range of geometries beyond the ubiquitous cylinder can be fabricated and characterized. Finally, the glass matrix ensures environmental isolation of the hygroscopic scintillating crystals, and so glass-ceramic scintillators show potential to serve as viable detectors in alpha- and neutron-spectroscopy in addition to gamma-rays. However, for the improvements promised by glass-ceramics to become reality, several material properties must be considered. These include the degree of control over precipitated crystallite size, the solubility limit of the glass matrix with respect to the scintillating compounds, the variation in maximum achievable light yield with composition, and the peak wavelength of emitted photons. Studies will focus on three base glass systems, sodium-aluminosilicate (NAS), sodium-borosilicate (NBS), and alumino-borosilicate (ABS), into which a cerium-doped gadolinium bromide (GdBr₃(Ce)) scintillating phase will be incorporated. Scintillator volumes of 50 cubic centimeters or greater will be fabricated to facilitate comparison with NaI(Tl) crystals currently available.
  • Item
    The rheological and structural properties of blends of polyethylene with paraffin wax
    (Georgia Institute of Technology, 2012-08-29) Winters, Ian Douglas
    This research addresses and illuminates a little understood region of miscible polymer mixtures and demonstrates a new means of separating wax from such blends. The method, termed Deformation Induced Phase Segregation potentially eliminates need of toxic processing solvents for wax removal or recovery in these types of blends. Previous theories of polymer combinations address them exclusively as solutions or as blends, two independent classes having very different behaviors. This study provides bridge connecting these two classes by identifying crossover points between them and the behaviors exhibited therein. The blends of this form were found to be semi-miscible, forming a homogenous phase in the melt but a two-phase system in the solid, with the rheological behavior influenced by the polymer's molecular weight and architecture. It also demonstrates practical promise of this regime by introducing a mechanical compression process to separate the wax phase from such a type of blend. This process potentially permits production of ultra-high molecular weight polyethylene (UHMwPE) films and fibers by melt processing, thereby obviating need of otherwise essential but expensive and environmentally unfriendly toxic solvents.
  • Item
    Linking phase field and finite element modeling for process-structure-property relations of a Ni-base superalloy
    (Georgia Institute of Technology, 2012-08-28) Fromm, Bradley S.
    Establishing process-structure-property relationships is an important objective in the paradigm of materials design in order to reduce the time and cost needed to develop new materials. A method to link phase field (process-structure relations) and microstructure-sensitive finite element (structure-property relations) modeling is demonstrated for subsolvus polycrystalline IN100. A three-dimensional (3D) experimental dataset obtained by orientation imaging microscopy performed on serial sections is utilized to calibrate a phase field model and to calculate inputs for a finite element analysis. Simulated annealing of the dataset realized through phase field modeling results in a range of coarsened microstructures with varying grain size distributions that are each input into the finite element model. A rate dependent crystal plasticity constitutive model that captures the first order effects of grain size, precipitate size, and precipitate volume fraction on the mechanical response of IN100 at 650°C is used to simulate stress-strain behavior of the coarsened polycrystals. Model limitations and ideas for future work are discussed.
  • Item
    The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates
    (Georgia Institute of Technology, 2012-08-27) Shen, Yubin
    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on the reaction mechanism between PTFE and Ti in the composite systems, which will be instructive for future energetic studies on other polymer / reactive metal systems.