Organizational Unit:
School of Materials Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 1436
  • Item
    Conformal sol-gel coatings on three-dimensional nanostructured templates
    (Georgia Institute of Technology, 2007-12-19) Weatherspoon, Michael Raymond
    A custom-built surface sol-gel pumping system was built for applying conformal sol-gel based coatings with controlled thicknesses on three-dimensional (3-D) nanostructured templates. The 3-D templates utilized in this work were derived from biological species, such as diatoms and butterfly wings, as well as a synthetic photoresist polymer (SU-8). Tin oxide coatings were applied on silica-based diatom frustules using the automated surface sol-gel pumping system. An organic dendrimer method was developed for amplifying hydroxyl groups on the silica-based frustule surfaces to enhance the surface sol-gel deposition process. Conformal tin oxide coatings with controlled thicknesses were obtained on the hydroxyl amplified frustule surfaces; however, little if any deposition was observed on the frustules that were not subjected to the hydroxyl amplification process. The automated surface sol-gel system was also utilized to apply multicomponent tin oxide-doped titania alkoxide chemistries on the wing scales of a blue Morpho butterfly. The alkoxide solutions reacted directly with the OH functionalities provided by the native chitin chemistry of the scales. The tin oxide served as a rutile nucleating agent which allowed the titania to completely crystallize in the high refractive index rutile titania phase with doping concentrations of tin oxide as low as 7 mol % after annealing at 450oC. The tin oxide-doped titania coatings were both nanocrystalline and nanothick and replicated the nanostructured scales with a high degree of precision. Undoped titania coatings applied on the scales required a heat treatment of 900oC to crystallize the coating in the rutile titania phase which led to adverse coarsening effects which destroyed the nanostructed features of the scales. Tin oxide-doped titania coatings were also deposited on 3-D SU-8 photonic crystal structures. The coating was crystallized in an acidic solution at 80oC which led to the formation of rutile titania inverse opal photonic crystal structures which maintained the overall structure and ordering of the template. Barium titanate and europium-doped barium titanate coatings were applied on diatom frustules using a conventional reflux/evaporation deposition process. The silica-based diatom frustules had to first be converted into magnesia/silicon composite replicas using a gas/solid displacement reaction to render the template chemically compatible with the barium titanate-based coating. Conformal titanate-based coatings were obtained on the magnesia frustule replicas possessing uncontrolled thicknesses and excess inorganic particles using the reflux/evaporation deposition process. The europium-doped barium titanate coated frustules exhibited bright red photoluminescent properties upon stimulation with an ultraviolet light source.
  • Item
    Acoustics in nanotechnology: manipulation, device application and modeling
    (Georgia Institute of Technology, 2007-12-19) Buchine, Brent Alan
    Advancing the field of nanotechnology to incorporate the unique properties observed at the nanoscale into functional devices has become a major scientific thrust of the 21st century. New fabrication tools and assembly techniques are required to design and manufacture devices based on one-dimensional nanostructures. Three techniques for manipulating nanomaterials post-synthesis have been developed. Two of them involve direct contact manipulation through the utilization of a physical probe. The third uses optically generated surface acoustic waves to reproducibly control and assemble one-dimensional nanostructures into desired locations. The nature of the third technique is non-contact and limits contamination and defects from being introduced into a device by manipulation. While the effective manipulation of individual nanostructures into device components is important for building functional nanosystems, commercialization is limited by this one-device-at-a-time process. A new approach to nanostructure synthesis was also developed to site-specifically nucleate and grow nanowires between two electrodes. Integrating synthesis directly with prefabricated device architectures leads to the possible mass production of NEMS, MEMS and CMOS systems based upon one-dimensional nanomaterials. The above processes have been pursued to utilize piezoelectric ZnO nanobelts for applications in high frequency electronic filtering as well as biological and chemical sensing. The high quality, single crystal, faceted nature of these materials make them ideal candidates for studying their properties through the designs of a bulk acoustic resonator. The first ever piezoelectric bulk acoustic resonator based on bottom-up synthesized belts will be demonstrated. Initial results are promising and new designs are implemented to scale the device to sub-micron dimensions. Multiple models will be developed to assist with design and testing. Some of models presented will help verify experimental results while others will demonstrate some of the problems plaguing further investigations.
  • Item
    Computer simulations of realistic microstructures: implications for simulation-based materials design
    (Georgia Institute of Technology, 2007-12-17) Singh, Harpreet
    The conventional route of materials development typically involves fabrication of numerous batches of specimens having a range of different microstructures generated via variations of process parameters and measurements of relevant properties of these microstructures to identify the combination of processing conditions that yield the material having desired properties. Clearly, such a trial and error based materials development methodology is expensive, time consuming, and inefficient. Consequently, it is of interest to explore alternate strategies that can lead to a decrease in the cost and time required for development of advanced materials such as composites. Availability of powerful and inexpensive computational power and progress in computational materials science permits advancement of modeling and simulations assisted materials design methodology that may require fewer experiments, and therefore, lower cost and time for materials development. The key facets of such a technology would be computational tools for (i) creating models to generate computer simulated realistic microstructures; (ii) capturing the process-microstructure relationship using these models; and (iii) implementation of simulated microstructures in the computational models for materials behavior. Therefore, development of a general and flexible methodology for simulations of realistic microstructures is crucial for the development of simulations based materials design and development technology. Accordingly, this research concerns development of such a methodology for simulations of realistic microstructures based on experimental quantitative stereological data on few microstructures that can capture relevant details of microstructural geometry (including spatial clustering and second phase particle orientations) and its variations with process parameters in terms of a set of simulation parameters. The interpolation and extrapolation of the simulation parameters can then permit generation of atlas of virtual microstructures that covers the complete range of variations of processing conditions of interest. These simulated and virtual microstructures can then be used in the micromechanical models such as FEM to analyze their constitutive properties
  • Item
    Shock processing of bulk anisotropic nanocomposite permanent magnets
    (Georgia Institute of Technology, 2007-12) Thadhani, Naresh N. ; Wehrenberg, Christopher
  • Item
    Low-Cost Continuous Production of Carbon Fiber-Reinforced Aluminum Composites
    (Georgia Institute of Technology, 2007-11-15) Durkin, Craig Raymond
    The research conducted in this study was concerned with the development of low-cost continuous production of carbon fiber/aluminum composites. Two coatings, alumina and zirconia, were applied to the fibers to protect against interfacial degradation. They were applied using a sol-gel method and common metal salts. The fibers were infiltrated with molten aluminum using an ultrasound sonicator. The resultant composites were well-infiltrated and were tested in tension to determine their mechanical properties. Strengths were only 15-35% of the theoretical values predicted by the rule of mixtures. The composite microstructure revealed a sizable void fraction and that the fibers within the composites did not contain any coating on their surface. It was hypothesized that this was a result of few exposed graphite plane edges on the fiber surface, causing poor adhesion of the oxide coating to the fiber surface. To improve adhesion, an amorphous carbon coating was applied to the fiber surface, but still the oxide coatings were removed from the fibers upon infiltration. It was found, however, that the carbon coating on its own did strengthen the interface between the fiber and the aluminum.
  • Item
    Discrete Numerical Simulations of Solid Oxide Fuel Cell Electrodes: Developing New Tools for Fundamental Investigation
    (Georgia Institute of Technology, 2007-11-14) Mebane, David Spencer
    A program of study has been established for the quantitative study of electrode reactions in solid oxide fuel cells. The initial focus of the program is the mixed conducting cathode material strontium-doped lanthanum manganate (LSM). A formalism was established treating reactions taking place at the gas-exposed surface of mixed conducting electrodes. This formalism was incorporated into a phenomenological model for oxygen reduction in LSM, which treats the phenomenon of sheet resistance. Patterned electrodes were designed that reduce the dimensionality of the appropriate model, and these electrodes were successfully fabricated using DC sputtering and photolithography. A new model for the bulk defect equilibrium in LSM was proposed and shown to be a better fit to nonstoichiometry data at low temperatures. The fitting was carried out with a particle swarm optimizer and a rigorous method for identification. It was shown that a model for the interface structure between LSM and yttria-stabilized zirconia (YSZ) that assumes free oxygen vacancies in YSZ does not accord with experimental observations. Cluster variation method (CVM) was adapted for analysis of the problem, and a new analytical method combining CVM and electrical contributions to the free energy was proposed.
  • Item
    Development of SOFC anodes resistant to sulfur poisoning and carbon deposition
    (Georgia Institute of Technology, 2007-11-14) Choi, Song Ho
    The surface of a dense Ni-YSZ anode was modified with a thin-film coating of niobium oxide (Nb2O5) in order to understand the mechanism of sulfur tolerance and the behavior of carbon deposition. Results suggest that the niobium oxide was reduced to NbO2 under operating conditions, which has high electrical conductivity. The NbOx coated dense Ni-YSZ showed sulfur tolerance when exposed to 50 ppm H2S at 700°C over 12 h. Raman spectroscopy and XRD analysis suggest that different phases of NbSx formed on the surface. Further, the DOS (density of state) analysis of NbO2, NbS, and NbS2 indicates that niobium sulfides can be considered as active surface phases in the H2S containing fuels. It was demonstrated that carbon formation was also suppressed with niobium oxide coating on dense Ni-YSZ in humidified CH4 (3% H2O) at 850ºC. In particular, under active operating conditions, there was no observable surface carbon as revealed using Raman spectroscopy due probably to electrochemical oxidation of carbon. Stable performances of functional cells consisting of Pt/YSZ/Nb2O5 coated dense Ni-YSZ in the fuel were achieved; there was no observable degradation in performance due to carbon formation. The results suggest that a niobium oxide coating has prevented carbon from formation on the surface probably by electrochemically oxidation of carbon on niobium oxide coated Ni-YSZ. On the other hand, computational results suggest that, among the metals studied, Mo seems to be a good candidate for Ni surface modification. Ni-based anodes were modified with Mo using wet-impregnation techniques, and tested in 50 ppm H2S-contaminated fuels. It was found that the Ni-Mo/CeO2 anodes have better sulfur tolerance than Ni, showing a current transient with slow recovery rather than slow degradation in 50 ppm H2S balanced with H2 at 700°C.
  • Item
    Investigating the mechanism of transgranular stress corrosion cracking in near-neutral ph environments on buried fuel transmission pipelines
    (Georgia Institute of Technology, 2007-11-12) Asher, Stefanie Lynn
    This research investigates the mechanism of transgranular stress corrosion cracking (TGSCC) on fuel transmission pipelines. This research proposes that in near-neutral pH environments, hydrogen can be generated by the dissociation of carbonic acid and the reaction of metal ions with bicarbonate solutions, significantly increasing the available hydrogen for diffusion into the pipeline steel. This research has shown that TGSCC of pipeline steels is possible in simple groundwater solutions containing bicarbonate ions and carbon dioxide. Microstructural characterization coupled with hydrogen permeation indicates that the level of strain in the microstructure has the most influence on hydrogen diffusivity. Hydrogen accumulation occurs preferentially in at high energy discontinuous interfaces such as inclusion interfaces. It was determined that a stress concentration is required to facilitate sufficient hydrogen accumulation in the pipeline steel in order to initiate TGSCC. It was discovered that these stress concentrations develop from inclusions falling out of the pipeline surface. Slow strain rate tests found that TGSCC occurred in a wide range of compositions and temperatures as long as near-neutral conditions were maintained. Microcracks ahead of the crack tip provide evidence of hydrogen in these cracking processes. Morphology of these microcracks indicates that cracks propagate by the coalescence of microcracks with the main crack tip. Further research findings, scientific impact, and potential future work are also discussed.
  • Item
    Mechanochemical Reactions and Strengthening in Epoxy-Cast Aluminum Iron-Oxide Mixtures
    (Georgia Institute of Technology, 2007-11-02) Ferranti, Louis, Jr.
    This investigation is focused on the understanding of mechanical and chemical reaction behaviors of stoichiometric mixtures of nano- and micro-scale aluminum and hematite (Fe2O3) powders dispersed in epoxy. Epoxy-cast Al+Fe2O3 thermite composites are an example of a structural energetic material that can simultaneously release energy while providing structural strength. The structural and energetic response of this material system is investigated by characterizing the mechanical behavior under high-strain rate and shock loading conditions. The mechanical response and reaction behavior are closely interlinked through deformation characteristics. It is, therefore, desirable to understand the deformation behavior up to and beyond failure and establish the necessary stress and strain states required for initiating chemical reactions. The composite s behavior has been altered by changing two main processing parameters; the reactants particle size and the relative volume fraction of the epoxy matrix. This study also establishes processing techniques necessary for incorporating nanometric-scale reactants into energetic material systems. The mechanochemical behavior of epoxy-cast Al+Fe2O3 composites and the influence of epoxy volume fraction have been evaluated for a variety of loading conditions over a broad range of strain rates, which include low-strain rate or quasistatic loading experiments (10-4 to 10-2 1/s), medium-strain rate Charpy and Taylor impacts (103 to 104 1/s), and high-strain rate parallel-plate impacts (105 to 106 1/s). In general, structural strength and toughness have been observed to improve as the volume fraction of epoxy decreases, regardless of the loading strain rate regime explored. Hugoniot experiments show damage occurring at approximately the same critical impact stress for compositions prepared with significantly different volume fractions of the epoxy binder phase. Additionally, Taylor impact experiments have indicated evidence for strain-induced chemical reactions, which subject the composite to large shear accompanied by temperature increase and associated softening, preceding these reactions. Overall, the work aims to establish an understanding of the microstructural influence on mechanical behavior and chemical reactivity exhibited by epoxy-cast Al+Fe2O3 materials when exposed to high stress and high-strain loading conditions. The understanding of fundamental aspects and the results of impact experiment measurements provide information needed for the design of structural energetic materials.
  • Item
    High performance electrically conductive adhesives (ecas) for leadfree interconnects
    (Georgia Institute of Technology, 2007-11-02) Li, Yi
    Electrically conductive adhesives (ECAs) are one of the lead-free interconnect materials with the advantages of environmental friendliness, mild processing conditions, fewer processing steps, low stress on the substrates, and fine pitch interconnect capability. However, some challenging issues still exist for the currently available ECAs, including lower electrical conductivity, conductivity fatigue in reliability tests, limited current-carrying capability, poor impact strength, etc. The interfacial properties is one of the major considerations when resolving these challenges and developing high performance conductive adhesives. Surface functionalization and interface modification are the major approaches used in this thesis. Fundamental understanding and analysis of the interaction between various types of interface modifiers and ECA materials and substrates are the key for the development of high performance ECA for lead-free interconnects. The results of this thesis provide the guideline for the enhancement of interfacial properties of metal-metal and metal-polymer interactions. Systematic investigation of various types of ECAs contributes to a better understanding of materials requirements for different applications, such as surface mount technology (SMT), flip chip applications, flat panel display modules with high resolution, etc. Improvement of the electrical, thermal and reliability of different ECAs make them a potentially ideal candidate for high power and fine pitch microelectronics packaging option.