Organizational Unit:
School of Materials Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Piezo-phototronics: from experiments to theory
    (Georgia Institute of Technology, 2014-06-26) Liu, Ying
    The piezo-phototronics effect is the three way coupling of semiconductor properties, photonics and piezoelectricity in the same material. Research on piezo-phototronics effect has illustrated its application on various Zinc Oxide (ZnO) nanowire based devices, yet a systematical study with comprehensive theoretical model is still missing. Here we have designed experiments on wider variety of materials to investigate the mechanism of the piezo-phototronics effect, and then built up a theoretical model for more thorough understanding. Experimental results are shown for Cadmium Sulfide (CdS) photodetectors for visible light detection, inorganic/organic hybrid Light Emitting Diodes (LEDs) and LED arrays, and it is demonstrated that strain can significantly tune the performance of these optoelectronic devices. Theoretical methodologies are proposed for Metal-Semiconductor-Metal (MSM) structure and p-n junctions, including analytical solutions and Finite Element Method (FEM) simulations. For Schottky contacts in photodetectors, barrier height change is determined as the main reason for the effect, and an exponential relationship between applied external strain and the device current is discovered, and is qualitatively confirmed from experimental results. For p-n junctions in LEDs, change in size of depletion region under strain is credited for the current change, and a charge channel is predicted for large strain, which gives explanation for the observed gigantic enhancement of light emission efficiency in experiments.
  • Item
    Fabrication of Nanostructured Electrodes and Interfaces Using Combustion CVD
    (Georgia Institute of Technology, 2005-08-25) Liu, Ying
    Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Wcm2 at 700¡ãC) and high power densities (i.e. 481 mW/cm2 at 800¡ãC) were generated at operating temperature range of 600¡ãC-850¡ãC. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200-500¡ãC and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well-aligned ZnO nanorods, and two-dimensional ZnO flakes. Solid-state gas sensors based on single piece of these nanostructures demonstrated superior gas sensing performances. These size-tunable nanostructures could be the building blocks of or a template for fabrication of functional devices. In summary, this research has developed new ways for fabrication of high-performance solid-state ionic devices and has helped generating fundamental understanding of the correlation between processing conditions, microstructure, and properties of the synthesized structures.