Organizational Unit:
School of Materials Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Thermal stability and annealing of columnar defects in Bi₂Sr₂Ca₁Cu₂O₈/Ag superconductor
    (Georgia Institute of Technology, 1995-08-14) Thompson, J. R. ; Paul, David ; Wang, Z. L. (Zhong Lin) ; Kroeger, D. M. ; Christen, D. K.
    This work establishes the stability at elevated temperatures of columnar defects, artificially formed in the Bi-based cupric oxide superconductor Bi₂Sr₂Ca₁Cu₂O₈ for enhanced vortex pinning. Isochronal anneals, conducted in air, led to losses of critical current density in two stages. The defects were relatively stable up to ~ 550 °C, where second stage annealing began; above this, the pinning diminished rapidly. The recrystallization and loss of columnar defects were corroborated by transmission electron microscopy.
  • Item
    Strong, Asymmetric Flux Pinning by Miscut-Growth-Initiated Columnar Defects in Epitaxial YBa[subscript 2]Cu[subscript 3]O[subscript 7—chi] Films
    (Georgia Institute of Technology, 1995-03-20) Lowndes, D. H. ; Christen, D. K. ; Klabunde, C. E. ; Wang, Z. L. (Zhong Lin) ; Kroeger, D. M. ; Budai, J. D. ; Zhu, Shen ; Norton, D. P.
    Strong flux pinning and a pronounced asymmetric angular dependence of J[subscript c]([eta, theta]) have been discovered in YBa[subscript 2]Cu[subscript 3]O[subscript 7—chi] films grown on miscut, mosaic LaAlO[subscript 3] substrate surfaces. A new pinning peak, which at low fields is nearly as strong as the “intrinsic pinning,” is observed for magnetic field orientations between the c axis and the CuO[subscript 2] plane. Cross-section transmission electron microscopy reveals columnar growth defects (2–3 nm diameter) aligned near the c axis, in concentrations ~10[superscript 10] cm[subscript —2]. The results demonstrate that deliberately modified substrate surfaces may introduce technologically useful flux pinning in YBa[subscript 2]Cu[subscript 3]O[subscript 7—chi] films.