Organizational Unit:
School of Materials Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 14
  • Item
    Process, structure and electrochemical properties of carbon nanotube containing films and fibers
    (Georgia Institute of Technology, 2009-05-13) Jagannathan, Sudhakar
    The objective of this thesis is to study the effect of process conditions on structure and electrochemical properties of polyacrylonitrile (PAN)/carbon nanotube (CNT) composite film based electrodes developed for electrochemical capacitors. The process parameters like activation temperature, CNT loading in the composite films are varied to determine optimum process conditions for physical (CO2) and chemical (KOH) activation methods. The PAN/CNT precursors are stabilized in air, carbonized in inert atmosphere (argon), and activated by physical (CO2) and chemical (KOH) methods. The physical activation process is carried out by heat treating the carbon precursors in CO2 atmosphere at activation temperatures. In the chemical activation process, stabilized carbon precursors are immersed in aqueous solutions of activating media (KOH), dried, and subsequently heat treated in an inert atmosphere at the activation temperature. The structure and morphology are probed using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The specific capacitance, power and energy density of the activated electrodes are evaluated with aqueous electrolytes (KOH) as well as organic electrolyte (ionic liquid in acetonitrile) in Cell Test. The surface area and pore size distribution of the activated composite electrodes are evaluated using nitrogen absorption. Specific capacitance dependence on factors such as surface area and pore size distribution are studied. A maximum specific capacitance of 300 F/g in KOH electrolyte and maximum energy density of 22 wh/kg in ionic liquid has been achieved. BET surface areas in excess of 2500 m2/g with controlled pore sizes in 1 - 5 nm range has been attained in this work.
  • Item
    Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers
    (Georgia Institute of Technology, 2009-03-23) Jain, Rahul
    The graphitic nature, continuous structure, and high mechanical properties of carbon nanotubes (CNTs) make them good candidate for reinforcing polymer fiber. The different types of CNTs including single-wall carbon nanotubes (SWNTs), few-wall carbon nanotubes (FWNTs), and multi-wall carbon nanotubes (MWNTs), and carbon nanofibers (CNFs) differ in terms of their diameter and number of graphitic walls. The desire has been to increase the concentration of CNTs as much as possible to make next generation multi-functional materials. The work in this thesis is mainly focused on MWNT and CNF reinforced polyacrylonitrile (PAN) composite fibers, and SWNT, FWNT, and MWNT reinforced poly(etherketone) (PEK) composite fibers. To the best of our knowledge, this is the first study to report the spinning of 20% MWNT or 30% CNF reinforced polymer fiber spun using conventional fiber spinning. Also, this is the first study to report the PEK/CNT composite fibers. The fibers were characterized for their thermal, tensile, mechanical, and dynamic mechanical properties. The fiber structure and morphology was studied using WAXD and SEM. The effect of two-stage heat drawing, sonication time for CNF dispersion, fiber drying temperature, and molecular weight of PAN was also studied. Other challenges associated with processing high concentrations of solutions for making composite fibers have been identified and reported. The effect of CNT diameter and concentration on fiber spinnability and electrical conductivity of composite fiber have also been studied. This work suggests that CNT diameter controls the maximum possible concentration of CNTs in a composite fiber. The results show that by properly choosing the type of CNT, length of CNTs, dispersion of CNTs, fiber spinning method, fiber draw ratio, and type of polymer, one can get electrically conducting fibers with wide range of conductivities for different applications. The PEK based control and composite fibers possess high thermal stability with almost no weight loss up to 500 degree C and negligible thermal shrinkage up to 200 degree C. The PEK based fibers showed high toughness which surpassed many of the high-performance fibers like Kevlar(R) and Zylon(R). The 10% FWNT containing fiber is unique in terms of high electrical conductivity and high toughness. The CNT based fibers may be used as structural material, fire-barrier/protection textile, electrode for electrochemical capacitor or fuel cells, and as a template for directional growth of tissues.
  • Item
    The study of crystallization and interfacial morphology in polymer/carbon nanotube composites
    (Georgia Institute of Technology, 2008-07-08) Minus, Marilyn Lillith
    This study illustrates the ability of SWNT to nucleate and template polymer crystallization and orientation, and produce materials with improved properties and unique polymer morphologies. This research work focuses primarily on the physical interaction between single-wall carbon nanotubes (SWNT) and the flexible polymer system polyvinyl alcohol (PVA). Polymer crystallization in the near vicinity of SWNT (interphase) has been studied to understand the capability of SWNT in influence polymer morphology in bulk films and fibers. Fibrillar crystallization was achieved by shearing PVA/SWNT dispersions and resulted in the formation of oriented PVA/SWNT fibers or ribbons, while PVA solutions produce unoriented fibers. PVA single crystals were grown in PVA solutions as well as PVA/SWNT dispersions over a period of several months at room temperature (25 C). PVA single crystal growth in PVA/SWNT dispersions is templated by SWNT, and these crystals show the presence of new morphologies for PVA. PVA single crystals of differing morphology were also grown at elevated temperatures, and show morphology dependant electron beam irradiation resistance. Gel-spinning was used to produce PVA, and PVA/SWNT fibers where, PVA crystallization in the bulk fiber was observed. With 1 wt% SWNT loading in PVA, the fiber tensile strength increased from 1.6 GPa for the control PVA to 2.6 GPa for PVA/SWNT. Analysis of this data suggests stress of up to ~120 GPa on the SWNT. This is the highest reported stress on the SWNT to date and confirm excellent reinforcement and load transfer of SWNT in the PVA matrix. Raman spectroscopy data show high SWNT alignment in the fiber where the ratio is measured to be 106. High-resolution transmission electron microscopy (HR-TEM) is used to characterize polymer morphology near the polymer-SWNT interface for PVA/SWNT fibers. HR-TEM studies of Polymer/CNT composites show distinct morphological differences at the polymer-SWNT interface/interphase for semi-crystalline and amorphous polymer systems which may be related to polymer-SWNT interaction in the composite. Studies on polymer crystallization, carbon nanotube (CNT)/polymer composite, and polymer composite interfacial literature in summarized in Chapter 1. Fibrillar crystallization of PVA and PVA/SWNT is presented in Chapter 2. PVA single crystal grown at varying temperatures is discussed in Chapter 3, followed by single crystal growth studies in PVA/SWNT dispersions in Chapter 4. Chapter 5 summarizes the gel-spinning studies of PVA and PVA/SWNT fibers. Conclusions and recommendations for future work pertaining to this study are given in Chapter 6. Results of HR-TEM studies on other polymer/SWNT composites are given in Appendix A, Appendix B summarizes work on PE crystallization in the SWNT/DMF dispersions, and studies of PVA and PVA/SWNT gel films are summarized in Appendix C.
  • Item
    Polyacrylonitrile/carbon nanotube composite fibers: reinforcement efficiency and carbonization studies
    (Georgia Institute of Technology, 2008-03-31) Chae, Han Gi
    Polyacrylonitrile (PAN)/carbon nanotube (CNT) composite fibers were made using various processing methods such as conventional solution spinning, gel spinning, and bi-component gel spinning. The detailed characterization exhibited that the smaller and longer CNT will reinforce polymer matrix mostly in tensile strength and modulus, respectively. Gel spinning combined with CNT also showed the promising potential of PAN/CNT composite fiber as precursor fiber of the next generation carbon fiber. High resolution transmission electron microscopy showed the highly ordered PAN crystal layer on the CNT, which attributed to the enhanced physical properties. The subsequent carbonization study revealed that carbonized PAN/CNT fibers have at least 50% higher tensile strength and modulus as compared to those of carbonized PAN fibers. Electrical conductivity of CNT containing carbon fiber was also 50% higher than that of carbonized PAN fiber. In order to have carbon fiber with high tensile strength, the smaller diameter precursor fiber is preferable. Bi-component gel spinning produced 1-2 µm precursor fiber, resulting in ~1 µm carbon fiber. The tensile strength of the carbonized bi-component fiber (islands fibers) is as high as 6 GPa with tensile modulus of ~500 GPa. Further processing optimization may lead to the next generation carbon fiber.
  • Item
    Structure, processing, and properties of polyacrylpnitrile/carbon nanotube composite films
    (Georgia Institute of Technology, 2007-01-08) Guo, Huina
    Vapor grown carbon nanofibers (VGCNFs) developed in 1980s are being widely used for reinforcing composites. Carbon nanotubes (CNTs) discovered in early 1990 can be classified as single wall carbon nanotubes (SWNTs), double wall carbon nanotube (DWNTs) and multi wall carbon nanotubes (MWNTs) depending on the number of grapheme layer forming the carbon nanotube. Polyacrylonitrile (PAN), a commercially important polymer is a predominant precursor for carbon fiber. Carbonized and activated PAN/SWNT films can find application as electrochemical supercapacitor electrodes. This study is focused on the structure, processing and properties of polyacrylonitrile/carbon nanotube (CNT) composite films. PAN/SWNT (60/40) composite film have been processed with unique combination of tensile strength, modulus, electrical conductivity, dimensional stability, low density, solvent resistance, and thermal stability. PAN molecular motion above the glass transition temperature (Tg) in the composite film is significantly suppressed, resulting in high PAN/SWNT storage modulus above Tg. The specific modulus of PAN/VGCNF composite films is consistent with the predictions of the Halpin-Tsai equation up to 20% VGCNF loading. The magnitude of modulus and other property enhancement is reduced as the nanofiber loading is increased (up to 40%). Further increase in nanofiber loading (> 40%) in composite results in modulus and tensile strength lower than those of control PAN. Electrical percolation was observed at 3.1 vol% VGCNF loading. PAN/CNT composite films were processed using SWNTs, DWNTs, MWNTs and VGCNFs to study the effect of various nanotubes on the composite properties. PAN/CNT films have been characterized by wide angle X-ray diffraction (WAXD), Raman spectroscopy, and scanning as well as transmission electron microscopy. Films have also been characterized for electrical conductivity, tensile and dynamic mechanical properties. Mechanical property results have been analyzed in terms of the nanotube surface area determined by nitrogen gas adsorption. PAN/CNT composite films and fibers are characterized using solid state 1HNMR spin lattice relaxation time (T1). With the addition of nanotubes, the T1 values for the PAN matrix generally decreased, and the reduction mechanism is discussed. The optical anisotropy of SWNT in PAN/SWNT composites was observed in their polarized infrared spectra and analyzed using the effective medium theory.
  • Item
    Carbon nanotube/polymer composites and novel micro- and nano-structured electrospun polymer materials
    (Georgia Institute of Technology, 2007-01-05) Liu, Jing
    This research work focuses on single wall carbon nanotube (SWNT)/polymer composites and novel structured electrospun polymer materials. Poly (methyl methacrylate) (PMMA) is used as polymer matrix. Obtaining SWNT/PMMA composite with enhanced mechanical and electrical properties is one of the research goals. The first important step is to figure out a method for achieving uniform SWNT dispersion in PMMA. Eight different solvents were used to disperse SWNT in PMMA. It is found that the polar component of the solubility parameter (£_p) of the solvent affects SWNT dispersion in PMMA. SWNT dispersion in PMMA improves with increasing solvent Ôp value, and the most uniform dispersion is obtained in nitromethane, which is the most polar solvent employed in this study. SWNT/PMMA composite films at various SWNT concentrations were processed employing nitromethane as the solvent. Mechanical and electrical property enhancements are observed. Processing, structure, morphology, and properties of these composites are discussed. A comparison between reinforcement efficiency of SWNT, multiwall carbon nanotubes (MWNT), and vapor grown carbon nano fibers (VGCNF) in PMMA is also discussed. In order to electrospin SWNT/PMMA/nitromethane solution into composite nanofibers successfully, first PMMA was electrospun. With increasing solution concentration, morphology of the electrospun polymer changed from particles to fibers. At relatively low solution concentrations, micro- and nano-structured polymer particles, and at higher solution concentrations, porous and solid nanofibers are observed. SWNT/PMMA/nitromethane solution was electrospun into polymer shell-SWNT core nanofibers. Solvent characteristics play an important role on particle or fiber mat morphology. The qualitative relationship between solvent properties (evaporation rate, dielectric constant, surface tension, and viscosity) and particle morphologies is discussed. By tailoring solution properties and electrospinning conditions, one can produce particles or fibers with controlled morphology for specific applications.
  • Item
    Electrospun carbon nanofibers for electrochemical capacitor electrodes
    (Georgia Institute of Technology, 2007-01-03) Wang, Tong
    The objective of this work is to electrospin poly(acrylonitrile) (PAN) based nanofibers with controlled diameter and to stabilize and carbonize them for developing meso-porous carbon for application as electrochemical capacitor electrodes. A sacrificial polymer, poly(styrene-co-acrylonitrile) (SAN) has been used to control porosity. Carbon nanotubes (CNT) have been used to increase electrode conductivity and hence power density. The study has been divided into two parts. In part I, electrospinning behavior of PAN and PAN/CNT has been studied. The diameter of electrospun PAN fibers was monitored as a function of polymer molecular weight, solution concentration, solution flow rate, distance between the spinneret and the target, and the applied voltage. Bead free PAN fibers of 60 nm diameter have been electrospun. Various electrospun fibers have been characterized by wide angle X-ray diffraction and by Raman spectroscopy. Electrospinning process has been observed by high speed photography. In part II, the electrospun PAN, PAN/SAN, and PAN/SAN/CNT fiber mats were stabilized, carbonized, and processed into electrochemical capacitor electrodes. The performance of the electrochemical capacitors was tested by the constant current charge/discharge and cyclic voltammetry in 6 molar potassium hydroxide aqueous solution. The surface area and pore size distribution of the electrodes were measured using N2 adsorption and desorption. The effect of surface area and pore size distribution on the capacitance performance has been studied. The capacitance performance of various carbonized electrospun fibers mats have been compared to those of the PAN/SAN/CNT film, carbon nanotube bucky paper, and activated carbon pellet. The capacitance of PAN/SAN/CNT fiber mat over 200 F/g (at a current density of 1 A/g) and the power density approaching 1 kW/kg have been observed. Addition of 1 wt% carbon nanotubes in PAN/SAN, improves the power density by a factor of four. For comparison, the capacitance of single wall carbon nanotube bucky paper at a current density of 1 A/g is about 50 F/g.
  • Item
    Carbon Nanotube Based Electrochemical Supercapacitors
    (Georgia Institute of Technology, 2006-07-31) Zhou, Chongfu
    Several approaches have been used to develop carbon nanotube (CNT) based electrochemical supercapacitors. These approaches include the following: (a) stabilization and carbonization of ternary composites of polyacrylonitrile (PAN), poly (styrene co-acrylonitrile) (SAN) copolymer, and single wall carbon nanotubes (SWNTs); (b) SWNT membranes functionalized with aryl chloride, sodium sulfonate, aryl sulfonic acid, bis(3,5-di-tert-butylphenyl)5-aminobenzene-1,3-dioate, and 4,4 -methylenedianiline; and (c) pyrrole treated SWNTs. In addition nitric acid functionalized and heat-treated SWNT membranes have been studied. The electrochemical supercapacitor behavior of these membrane electrodes has been characterized by cyclic voltammetry, constant current charging-discharging, and impedance analysis in aqueous and ionic liquid electrolytes. Long term performance of selected electrodes has been evaluated. The surface area and pore size distribution was quantified by N2 gas adsorption/desorption and correlated with capacitance performance. The surface functional groups have been characterized by X-ray photoelectron spectroscopy. CNT electrode/electrolyte interaction has been characterized using contact angle measurements. Electrolyte absorption by the electrodes has also been characterized. Carbonized PAN/SAN/SWNT ternary composites exhibit double layer capacity of over 200 μF/cm2. By comparison, the double layer capacity of classical meso-porous carbons is in the range of 10-50 μF/cm2. The capacitance of functionalized SWNTs is up to 2 times that of the control bucky paper made from unfunctionalized SWNTs. Energy density of functionalized electrodes when evaluated in an ionic liquid is as high as 28 kJ/kg. High capacitance (up to 350 F/g) was obtained for pyrrole-treated functionalized SWNT membranes in 6 M KOH. This value is almost seven times that of the control bucky paper. Correlating the capacitance with surface area and pore size distribution, it was observed that macropores (pore width greater than 50 nm) play an important role for achieving high capacitance.
  • Item
    Studies on Single Wall Carbon Nanotube and Polymer Composite Films and Fibers
    (Georgia Institute of Technology, 2004-12-01) Zhang, Xiefei
    Single wall carbon nanotubes (SWNT) have been extensively studied over the last decade due to their excellent comprehensive properties for a variety of applications. This study is focused on the applications of SWNTs as reinforcement for polymer matrices. Due to van der Waal interactions, SWNTs form bundles of about 30 nm diameters. In order to take full advantage of the SWNT mechanical properties, SWNT must exfoliate or at least disperse in small diameter bundle size. Optical microscopy and SEM only give qualitative information of dispersion. Quantitative characterization through TEM or AFM can be time consuming in order to get statistical result. In this study, simple method is developed to quantitatively estimate the size of SWNT bundle in dispersion based on the geometry controlled electrical percolation behavior. The SWNTs can be dispersed /exfoliated via PVP wrapped SWNT aqueous dispersion assisted by surfactants such as sodium dodycel sulfate. PVA / SWNT composite films prepared through PVP wrapped SWNTs exhibit improved mechanical properties as well as the evidence of load transfer from the polymer matrix to the SWNT as monitored by the Raman spectroscopy. SWNT can also be well dispersed into PVA/DMSO/H2O solution. Gel spinning of PVA/SWNT composite fiber has been successfully carried out with improved mechanical properties. Functionalized tubes can be used to enhance SWNT dispersion and exfoliation. Oxidation in strong acids is one method used for functionalizing nanotubes. SWNTs have been functionalized in nitric acid. The structure and properties of films (buckypaper) processed from nitric acid functionalized tubes have been studied exhibiting high tensile strength and high electrical conductivity. Nitric acid treatment results in selective degradation of the small diameter tubes.
  • Item
    Single Wall Carbon Nanotube/Polyacrylonitrile Composite Fiber
    (Georgia Institute of Technology, 2004-11-01) Liang, Jianghong
    Single Wall Carbon Nanotubes (SWNTs), discovered in 1993, have good mechanical, electrical and thermal properties. Polyacrylonitrile (PAN) is an important fiber for textiles as well as a precursor for carbon fibers. PAN has been produced since 1930s. In this study, we have processed SWNT/PAN fibers by dry-jet wet spinning. Purified SWNT, nitric acid treated SWNTs, and benzonitrile functionalized SWNTs have been used. Fiber processing was done in Dimethyl Formamide (DMF) and coagulation was done in DMF/water mixture. The coagulated fibers were drawn (draw ratio of 6) at 95 oC. Structure, orientation, and mechanical properties of these fibers have been studied. The cross-sections for all the fibers are not circular. Incorporation of SWNT in PAN results in improved mechanical properties, tensile modulus increased from 7.9 GPa for control PAN to 13.7 GPa for SWNT/PAN composite fiber, and functionalized SWNTs result in higher improvements with tensile modulus reaching 17.8 GPa for acid treated SWNT/PAN composite fibers. The theoretical analysis suggests that observed moduli of the composite fibers are consistent with the predicted values.