Organizational Unit:
Undergraduate Research Opportunities Program

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Using First Order Inductive Learning as an Alternative to a Simulator in a Game Artificial Intelligence
    (Georgia Institute of Technology, 2009-05-04) Long, Kathryn Anna
    Currently many game artificial intelligences attempt to determine their next moves by using a simulator to predict the effect of actions in the world. However, writing such a simulator is time-consuming, and the simulator must be changed substantially whenever a detail in the game design is modified. As such, this research project set out to determine if a version of the first order inductive learning algorithm could be used to learn rules that could then be used in place of a simulator. By eliminating the need to write a simulator for each game by hand, the entire Darmok 2 project could more easily adapt to additional real-time strategy games. Over time, Darmok 2 would also be able to provide better competition for human players by training the artificial intelligences to play against the style of a specific player. Most importantly, Darmok 2 might also be able to create a general solution for creating game artificial intelligences, which could save game development companies a substantial amount of money, time, and effort.
  • Item
    Distributed Feature Extraction Using Cloud Computing Resources
    (Georgia Institute of Technology, 2009-05-04) Dalton, Steven
    The need to expand the computational resources in a massive surveillance network is clear but traditional means of purchasing new equipment for short-term tasks every year is wasteful. In this work I will provide evidence in support of utilizing a cloud computing infrastructure to perform computationally intensive feature extraction tasks on data streams. Efficient off-loading of computational tasks to cloud resources will require a minimization of the time needed to expand the cloud resources, an efficient model of communication and a study of the interplay between the in-network computational resources and remote resources in the cloud. This report provides strong evidence that the use of cloud computing resources in a near real-time distributed sensor network surveillance system, ASAP, is feasible. A face detection web service operating on an Amazon EC2 instance is shown to provide processing of 10-15 frames per second.