Organizational Unit:
Fusion Research Center

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Sub-critical Transmutation Reactors with Tokamak Fusion Neutron Sources
    (Georgia Institute of Technology, 2005) Stacey, Weston M. ; Mandrekas, John ; Hoffman, E. A. (Elisha Albright)
    The principal results of a series of design scoping studies of sub-critical fast transmutation reactors (based on the nuclear and processing technology being developed in the USDoE Generation IV, Advanced Fuel Cycle and Next Generation Nuclear Plant programs) coupled with a tokamak fusion neutron source (based on the ITER design basis physics and technology) are presented.
  • Item
    A Superconducting Tokamak Fusion Transmutation of Waste Reactor
    (Georgia Institute of Technology, 2004-01) Stacey, Weston M. ; Mauer, A. N. ; Mandrekas, John ; Hoffman, E. A. (Elisha Albright)
    We are developing a Fusion Transmutation of Waste Reactor (FTWR) concept—a sub-critical, metal fuel, liquid metal cooled fast reactor driven by a tokamak DT fusion neutron source. An emphasis is placed on using nuclear, separation/processing and fusion technologies that either exist or are at an advanced state of development and on using plasma physics parameters that are supported by the existing database. We have previously discussed the general capabilities of DT tokamak neutron sources for driving transmutation reactors [1] and developed a design concept for a FTWR [2] based on normal conducting magnets. The concept has been further developed in papers dealing with nuclear design and safety [3] and with the evaluation of the potential impact on radioactive waste management [4]. The purpose of this paper is to examine how the FTWR design concept would change if superconducting magnets were used.
  • Item
    A Fusion Transmutation of Waste Reactor
    (Georgia Institute of Technology, 2002-03) Stacey, Weston M. ; Mandrekas, John ; Hoffman, E. A. (Elisha Albright) ; Kessler, G. P. ; Kirby, C. M. ; Mauer, A. N. ; Noble, J. J. ; Stopp, D. M. ; Ulevich, D. S.
    A design concept and the performance characteristics for a fusion transmutation of waste reactor (FTWR)—a sub-critical fast reactor driven by a tokamak fusion neutron source--are presented. The present design concept is based on nuclear, processing and fusion technologies that either exist or are at an advanced stage of development and on the existing tokamak plasma physics database. A FTWR, operating with k[subscript eff] ≤ 0.95 at a thermal power output of about 3 GW and with a fusion neutron source operating at Q [subscript p] = 1.5-2, could fission the transuranic content of about a hundred metric tons of spent nuclear fuel per full-power-year and would be self-sufficient in both electricity and tritium production. In equilibrium, a nuclear fleet consisting of LWRs and FTWRs in the electrical power ratio of 3/1 would reduce the actinides discharged from the LWRs in a once-through fuel cycle by 99.4% in the waste stream that must be stored in high-level waste repositories.