Organizational Unit:
School of Computational Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
Thumbnail Image
Item

Detecting Communities from Given Seeds in Social Networks

2011-02-22 , Riedy, Jason , Bader, David A. , Jiang, Karl , Pande, Pushkar , Sharma, Richa

Analyzing massive social networks challenges both high-performance computers and human under- standing. These massive networks cannot be visualized easily, and their scale makes applying complex analysis methods computationally expensive. We present a region-growing method for finding a smaller, more tractable subgraph, a community, given a few example seed vertices. Unlike existing work, we focus on a small number of seed vertices, from two to a few dozen. We also present the first comparison between five algorithms for expanding a small seed set into a community. Our comparison applies these algorithms to an R-MAT generated graph component with 240 thousand vertices and 32 million edges and evaluates the community size, modularity, Kullback-Leibler divergence, conductance, and clustering coefficient. We find that our new algorithm with a local modularity maximizing heuristic based on Clauset, Newman, and Moore performs very well when the output is limited to 100 or 1000 vertices. When run without a vertex size limit, a heuristic from McCloskey and Bader generates communities containing around 60% of the graph's vertices and having a small conductance and modularity appropriate to the result size. A personalized PageRank algorithm based on Andersen, Lang, and Chung also performs well with respect to our metrics.

Thumbnail Image
Item

High-performance computing for massive graph analysis

2010-10-30 , Bader, David A.